Lentiviral vectors (LVV) are widely used in an increasing number of approved cell and gene therapies, and benchmarking is important in evaluating production processes and products. We have produced a lentiviral vector reference material (LVV-RM) that expresses the common marker gene (green fluorescent protein [GFP]) to enable data comparisons and support LVV research programs. To generate that reference material, we have applied our previously developed fed-batch process to a 100 L production using an inducible LVV-producer cell line. The LVV material was harvested three days post-induction from a 200 L single-use bioreactor. A downstream purification process was also developed and scaled-up to meet production requirements: It consisted of nuclease digestion, clarification by depth filtration, chromatography capture using CIM-QA monolith anion exchangers, and ultrafiltration/diafiltration using a hollow fiber membrane prior to bulk-filling the final product. A total of 4.4 L of diafiltered and concentrated LVV product was obtained (9.2 E10 particles/mL, 3.6 E7 TU/mL) and stored at -80°C. Nearly 8000 vials are now available to the LVV community via the American Type Culture Collection (ATCC).
BioProcessing Journal Posts
This study assessed a novel statistical approach using space-filling designs (SFDs) and self-validating ensemble modeling (SVEM) machine learning to efficiently identify key process factors using recombinant adeno-associated virus type 9 (rAAV9) gene therapy manufacturing as a case study. Based on risk assessment of parameters that may impact rAAV9 production, we have evaluated six process parameters using 24-run SFDs generated by the JMP statistical software. SFDs are a new class of design of experiment (DoE) created with the objective of covering the entire design space as completely as possible; this in turn allows more accurate modeling of complex response surface behavior typically found in bioprocesses.
Efficient bioprocess characterization is essential for both regulatory compliance and commercial viability of biologics. Traditional approaches using resolution III/IV screening designs followed by response surface methodology are time-consuming, costly, and not always effective in identifying the important experimental effects. Definitive screening designs (DSDs) represent a novel class of three-level screening designs that can simultaneously evaluate main effects and quadratic relationships. While DSDs are increasingly used in bioprocess development, practical implementation guidelines remain limited. This case study bridges this gap by introducing a model-based framework to identify critical process parameters (CPPs) and optimize operating ranges for robust biologics production using plasmid DNA (pDNA). Minimal 14-run DSDs evaluated six input parameters and successfully identified CPPs and optimal operating ranges. This approach reduces experimental requirement by >50% compared to traditional designs, providing an efficient and economical strategy for bioprocess characterization and optimization.
In situ hybridization (ISH) for localization of DNA/RNA hybrids in cytological preparations was first described in 1969 by Gall and Pardue. This method enables mRNA transcripts to be detected in tissue sections. Unlike expression analyses based on polymerase chain reactions, the exact localization of the target transcripts can be identified within the tissue…
This article reports the average titers and yields currently attained with commercially manufactured biopharmaceuticals expressed by microbial systems such as E. coli and yeasts. A recent BioProcessing Journal article comparably covered results from the first phase of this study concerning historical titers and yields attained for commercial-scale biopharmaceutical production using mammalian cells (e.g., CHO). As with this prior mammalian component, public domain data concerning titers and yields attained with microbially manufactured products were obtained using all available sources.
The price per patient for protein-based and monoclonal antibody (mAb) therapies runs into thousands of dollars per patient each year. These therapies cost considerably more to manufacture than small molecules. Hence, if mammalian or insect cell lines expressing high protein titres can be selected and optimized for protein expression using microscale bioreactor models early in development, then manufacturing costs can be reduced significantly…
For the ongoing 2014 Ebola virus outbreak, all viable options and technologies need to be evaluated as potential countermeasures to address this emerging biological threat. Novavax, Inc. has a rapid, practical vaccine development and manufacturing platform with the capability to deliver clinical trial material and, ultimately, commercial doses in response to novel infectious disease agents. This report describes the application of our platform technology for the successful generation, manufacture, and release of a clinical batch of Zaire ebolavirus glycoprotein nanoparticle vaccine three months from project initiation…
This paper describes how a biopharmaceutical product development effort can be structured to identify, understand, and plan activities and goals required to efficiently and rapidly deliver new products and therapies to patients. Although the paper focuses on manufacturing, the approach can be used for all aspects of pharmaceutical product development from establishing an intellectual property position, developing a comprehensive manufacturing plan, to creating a marketing program…
The gram-negative bacterium, Escherichia coli, has a long history in the world of laboratory and industrial processes due to its ease of manipulation and well-understood genome. It is widely cultured under aerobic conditions. High cell density cultivation of E. coli is a powerful technique for the production of recombinant proteins. Indeed, 30% of the FDA-approved biopharmaceuticals on the market are produced in E. coli. An Escherichia coli fermentation run conducted using the Eppendorf BioFlo® 320 bioprocess control station achieved high cell density at 12 hours, as determined by a maximum optical density (OD600) measurement of 215.2. The weights of dry and wet cells were also measured…
