Category: <span>Bioreactor Scale-Up</span>

Stem cell-based regenerative medicine has great potential to advance the therapeutic treatment of human diseases. Among the various stem cell platforms, mesenchymal stem cells (MSCs) represent one of the most promising options. Currently, there are over 500 clinical trials based on MSCs registered at the NIH’s ClinicalTrials.gov website. Although successful expansion of MSCs in vitro has been well-established, higher-yield, billion-cell expansion of MSCs remains a bottleneck. In this study, we successfully demonstrated large-scale culture of human adipose-derived mesenchymal stem cells (AdMSCs) in an industrial, single-use vessel at 3.75 L scale.

Biologics Biologics Production Bioreactor Scale-Up Cell Lines Regulatory Research

Rocker bag bioreactors have been used successfully in cultivating cells because they provide good nutrient distribution and cell suspension while eliminating the need to validate cleaning and sterilization. Therefore, this study examined the long-term performance of a 50 L single-use bag bioreactor on a rocking platform in CB.Hep-1 monoclonal antibody (mAb) production. For such a purpose, the bioreactor was operated in a continuous mode with a mixture of serum-free media (SFM) for 62 days, and with protein-free medium (PFM) for another 62 days…

Biologics Biologics Production Bioreactor Scale-Up Research

This article reports the average titers and yields currently attained with commercially manufactured biopharmaceuticals expressed by microbial systems such as E. coli and yeasts. A recent BioProcessing Journal article comparably covered results from the first phase of this study concerning historical titers and yields attained for commercial-scale biopharmaceutical production using mammalian cells (e.g., CHO). As with this prior mammalian component, public domain data concerning titers and yields attained with microbially manufactured products were obtained using all available sources.

Biologics Production Bioreactor Scale-Up Mammalian Cell Culture Manufacturing Research

Microbial contamination is of great concern in pharmaceutical and biotech manufacturing. Many organizations struggle with determining the root cause of contamination when it occurs, and identifying effective safeguards to prevent future contaminations. This article will introduce a new model for understanding microbial contamination in biopharmaceutical and sterile products and processes. The “Contamination Triangle” identifies the three factors necessary for microbial ingress into a sterile (or pure) system. The use of this model will provide guidance for contamination investigations, clarify the explanation of the contributing root causes in Non-Conformances, and assist in identifying risks and risk mitigation measures as part of a Failure Modes and Effects Analysis (FMEA) or other risk assessment method…

Biologics Biologics Production Bioreactor Scale-Up Cell & Gene Therapy Fed-Batch Bioreactor Process Mammalian Cell Culture Manufacturing Regulatory Viral Reference Materials Viral Vectors

While playing an integral role in biotechnology and medicine, cryopreservation (CP) is often viewed as a “simple tool” and is overlooked as a critical and evolving component of cell and tissue bioprocessing. Despite this, cryopreservation serves as an enabling technology in numerous areas including the latest cell therapies. For example, over one third of the cells used in clinical trials are cryopreserved using the traditional methods, which in many cases yield suboptimal outcomes. Further, researchers still rely on the assessment of cell survival immediately post-thaw (within a few hours), and fail to account for the impact of cryopreservation-induced delayed-onset cell death (CIDOCD) which continues to impact survival from hours to days post-thaw.

Biologics Biologics Production Bioreactor Scale-Up Cell & Gene Therapy Cell Lines Fed-Batch Bioreactor Process HEK293 Mammalian Cell Culture Manufacturing Regulatory Viral Reference Materials Viral Vectors

Safety is typically viewed, perhaps unconsciously, as the result of a collection of factors, conditions, or behaviors. For example, consider “safety” in the context of personal, financial, or travel. With each, safety is defined as a set of component risks that have been managed to satisfactory levels for a particular situation. The same is true for product safety and risk, whether it be for raw materials or finished goods. The “safe” use of fetal bovine serum (FBS) is achieved by the management of controllable risks to a level that is acceptable for each particular application. For example, risk reduction requirements for research applications are not as stringent as for diagnostic, therapeutic, or manufacturing applications. Each end-user must decide on the level of risk reduction that is appropriate for their application…

Biologics Biologics Production Bioreactor Scale-Up Cell & Gene Therapy Cell Lines Fed-Batch Bioreactor Process HEK293 Mammalian Cell Culture Manufacturing Regulatory Viral Reference Materials Viral Vectors

For over 80 years, fetal bovine serum (FBS) and other animal-derived materials have been widely used in the production of vaccines, and more recently, biotherapeutics, for both human and animal applications. Ever since FBS was initially developed as a cell culture reagent, there have been efforts made to avoid the use of this critical commodity. The International Serum Industry Association (ISIA) recognizes the requirement for robust risk assessment and management, and has several ongoing programs designed to help mitigate the risk of using animal-derived materials. This article will provide an outline of the state of the industry and of these programs…

Biologics Biologics Production Bioreactor Scale-Up Cell & Gene Therapy Cell Lines Fed-Batch Bioreactor Process HEK293 Mammalian Cell Culture Manufacturing Regulatory Viral Reference Materials Viral Vectors

The world in general, and biopharmaceuticals in particular, are becoming increasingly complex and challenging. The ability to plan and execute a project to efficiently and effectively achieve a high-quality project goal is especially important for developing and manufacturing biopharmaceutical products. Managing projects ranging from product development, process characterization and validation, to building new manufacturing facilities requires straightforward, effective project management approaches and tools. But perhaps even more importantly, managing a project is a fundamental enabling skill required to manage both oneself as well as teams of people.

Biologics Biologics Production Bioreactor Scale-Up Cell & Gene Therapy Cell Lines Fed-Batch Bioreactor Process HEK293 Mammalian Cell Culture Manufacturing Regulatory Viral Reference Materials Viral Vectors

The proper handling of commonly used chemicals in bioprocessing is critical to maintaining a safe working environment as well as operational efficiency. Chemical mishandling can lead to failed batch processes, quality issues, as well as lost time and resources. As new technologies designed to help mitigate these safety risks become available, biomanufacturers have more opportunities to ensure that their production environments are safe. As a raw materials supplier, MilliporeSigma believes suppliers can play a critical role in terms of providing product and packaging solutions designed to minimize chemical handling risks…

Biologics Biologics Production Bioreactor Scale-Up Cell & Gene Therapy Cell Lines Fed-Batch Bioreactor Process HEK293 Mammalian Cell Culture Manufacturing Regulatory Viral Reference Materials Viral Vectors

Constant volume diafiltration (CVD) is commonly used in the biopharmaceutical industry for impurity removal or buffer exchange. The number of diavolumes is usually determined empirically or by theoretical analysis to achieve the target degree of impurity removal. There is, however, a lack of conclusive information about the effect of contaminant removal in variable volume diafiltration (VVD). VVD can occur when the diafiltration control mode is not functioning as intended. In this study, a mathematical model has been proposed to predict removal efficiency during VVD. Experiments were performed to compare the results to model calculations. A dilute concentration of bovine serum albumin solution was used as the feed solution to study variable volume effects.

Biologics Biologics Production Bioreactor Scale-Up Cell & Gene Therapy Cell Lines Fed-Batch Bioreactor Process HEK293 Mammalian Cell Culture Manufacturing Regulatory Viral Reference Materials Viral Vectors