In a world already awash with technology, life sciences companies are racing to add more automation and data sources, while ironically often spending less time focused on process improvements. In some cases, these two opposing actions can still produce positive results by: (a) reducing manual labor to minimize data translation errors; (b) adding sensors to gather a new kind of data about a protein or a process; or (c) implementing high-throughput techniques for biopharmaceutical development. But what about those situations where collecting new data is not so positive? Does it really make sense to run experiments without the full benefits of accessing accumulated data or gathering new data? Or to proceed without the insights gained from a colleague down the hall or at another site working on a related project? The difficulty in realizing these potential data analytics benefits often arises because more sensors tend to produce large, complex datasets with multivariate interactions. Further, the inherently complex nature of these datasets makes extraction of meaningful and relevant information a challenging task. This is where a streamlined data analytics methodology can help by providing the foundation to realize the benefits from all of this new data. This article illustrates how a comprehensive data analytics methodology can be used to develop insight into life sciences lab and production data, leading to improved operations. The focus is on sharing lessons learned from recent pharmaceutical case studies to illustrate how to drive innovation through use of a data analytics methodology. These case studies provide detailed, data-driven examples illustrating how to utilize a data analytics methodology to uncover important issues related to pharmaceutical development…
BioProcessing Journal Posts
Unless the trend of ever-rising product development costs is reversed, as demonstrated by Eroom’s law (look it up), the development of new biopharmaceutical products is doomed. In my opinion, the primary culprit is the industry’s inability to competently deal with complexity…
Plantibody purification is not as efficient as antibody purification from serum, ascites, or mammalian cell cultures. It is characterized by the application of inefficient plantibody solid-liquid extraction systems, low plantibody recovery, and short lifetimes of expensive chromatography matrices. To overcome it, several protocols of liquid-liquid aqueous two-phase extraction (ATPE) combined with affinity chromatography were previously studied to purify the CB.Hep-1 monoclonal antibody, which showed an unexpectedly high recovery. However, a study of ATPE combined with several affinity chromatography matrices to purify plantibodies has not been reported so far. Therefore, a combination of the best ATPE protocol with five specific affinity chromatography matrices to purify a plantibody for vaccine manufacturing is described in this study. Positive outcomes from plantibody recovery (%), specific activity (%), yield (mg purified IgG/L of leaf extract), and productivity (mg purified IgG/L of leaf extract/h) were achieved. Plantibody purity did not show statistical differences among all samples (> 97%, p < 0.05), and protein A leakage was thousands of times smaller than toxic protein A for non-human primates. In summary, the combination of ATPE (10% PEG 4000/15% K2PO4, pH 5.5) with two specific affinity resins were well-suited for large-scale plantibody purification from tobacco plant leaves...
Cancer is one of the leading causes of death worldwide, and the second leading cause of death in Cuba. To address this serious health problem, some research has involved suppressing tumor growth by inhibiting the angiogenesis process using several molecules including antibodies. A divalent version of antibody fragments, the CIGB-598a, with a molecular weight between 100 and 110 kDa, has been expressed in CHO cells specific for a novel epitope of the human vascular endothelium growth factor (VEGF). This material has been generated at the Center for Genetic Engineering and Biotechnology to support cancer research efforts. As in other studies involving the purification of recombinant molecules, CIGB-598a exhibited a high degree of aggregation in the CHO cell culture supernatant. This required the design of a downstream process capable of removing high levels of aggregates to obtain a highly pure target molecule for use in preclinical studies and human applications further down the road. We have developed a suitable downstream method based on the combination of three chromatography processes: affinity, cation-exchange, and anion-exchange that recover a relatively low level of CIGB-598a, but at a level of high purity (greater than 95 %) with fewer aggregates (below 1%)…
Cryopreservation is a desirable method for the long-term storage of human red blood cells (RBCs). Current protocols employ high concentrations of glycerol that must be removed from thawed RBCs prior to transfusion. Small-molecule ice recrystallization inhibitors (IRI) can protect RBCs from cryoinjury during the freezing and thawing process in the presence of reduced amounts of glycerol. Although reducing the concentration of glycerol during freezing reduces post-thaw deglycerolization times, thawed RBC units still require post-thaw processing. Herein, we report the cryopreservation of RBCs using the non-permeating cryoprotective agent (CPA) hydroxyethyl starch (HES) supplemented with small-molecule IRIs: (1) PMP-Glc (110 mM); and (2) pBrPh-Glc (30 mM). The results demonstrate that 30 mM pBrPh-Glc in 11.5 % (w/w) HES affords quantitative post-thaw recovery of intact RBCs that are superior to those obtained using glycerol with slow cooling rates, and show the utility of small-molecule IRIs in cryopreservation…
A rapid increase in the number of gene therapy trials and products has led to a comparable increase in the need for industrial production of viral gene therapy vectors such as lentiviral, adeno-associated, and adenoviral vectors. Current production systems are limited with respect to scalability and robustness. With our CAP® and CAP-T™ cell lines, we have developed a novel system for high-density suspension culture, efficient and reproducible transfection, and highly efficient production of viral vectors. By upstream process optimization, we have obtained a robust and high-density fed-batch culture system which can be scaled in any current bioreactor format. A design-of-experiments approach has been employed to optimize transient production of lentiviral vectors with significantly higher titers than can be obtained with adherent HEK293T cells…