The heterogenous group of advanced therapy medicinal products (ATMPs) are biologics with frequently limited viral safety profiles. As compared to well-established biologics such as monoclonal antibody products, the risk of virus contamination is significantly higher for some ATMPs. The standard approaches and tools used to mitigate the viral risk have limitations, leaving open the chances of missing virus contamination in an ATMP manufacturing process in both upstream and downstream. Next-generation sequencing (NGS) technology can overcome the residual risk by having the potential to detect any kind of virus contamination based on its inherent capability to detect any kind of nucleic acid in a sample. It perfectly combines the benefits and compensates for the downsides of the existing testing tools. It will replace a bunch of different established testing methods at improved turnaround times and, in the end, reduced overall costs. The combination of these characteristics is making NGS-based virus testing an in-demand and preferred approach to mitigating the virus contamination risk across all kinds of biologics mid- and long-term.
Tag: <span>viral contamination</span>
For decades, Chinese hamster ovary (CHO) cells have proven to be indispensable for the biopharmaceutical manufacturing industry, serving as cell factories that reliably produce grams per liter of recombinant proteins with the appropriate post-translational modifications and protein folding. However, one of the challenges of working with mammalian cells is that they are susceptible to viral contamination. Although the adoption of a wide range of risk mitigation strategies has made viral contamination a rare event, staggering costs and a shortage of life-saving medicines can result when these prevention strategies do fail, as demonstrated by a number of high-profile contamination events within the industry…
Contamination by adventitious agents (bacteria, fungi, mycoplasma, and viruses) represents potential safety risks for biologics produced in mammalian cells. Bacterial and fungal contaminations are usually easy to detect in culture medium due to changes in pH and visual indicators such as color and opacity. Mycoplasma contamination has been detected in 15–35% of cell lines deposited in some cell culture collection. This is because mycoplasma contaminations often cause little changes that can be readily detected by visual inspection. However, bacterial, fungal, and mycoplasma contamination can be more effectively controlled than viral contamination by careful screening of initial parental cell banks, proper environmental monitoring, along with ongoing testing…
The use of animal products, such as bovine serum, in the manufacture of biologics is a common practice. The United States’ Code of Federal Regulations, part nine (9CFR), dictates mandatory testing for viruses. In the last few years, we have learned that certain viruses undetected in industry standard tests, like the 9CFR assay, can cause significant contamination of bovine products. Last year in Europe, new guidelines from the Committee for Veterinary Medicinal Products (CVMP), and draft guidelines from the Committee for Proprietary Medicinal Products (CPMP), were published to address testing requirements for bovine serum. The use of these European Guidelines for bovine serum testing broadens the ability to detect viral contamination…
Various systems are used for production of biopharmaceuticals, including bacteria, yeast, mouse ascites, and animal cell culture. Each production system has its own set of risk factors for infection by viruses and their potential transmission in the final product. Viral contamination in products can arise from the animals themselves, from environmental sources, from the starting cells, or from materials introduced during the production and purification procedures. Methods have been developed for the prevention and control of these risks. The strategy used to minimize the risk of viral contamination combines several levels of viral safety…