In situ hybridization (ISH) for localization of DNA/RNA hybrids in cytological preparations was first described in 1969 by Gall and Pardue. This method enables mRNA transcripts to be detected in tissue sections. Unlike expression analyses based on polymerase chain reactions, the exact localization of the target transcripts can be identified within the tissue…
Category: <span>Biologics</span>
This article reports the average titers and yields currently attained with commercially manufactured biopharmaceuticals expressed by microbial systems such as E. coli and yeasts. A recent BioProcessing Journal article comparably covered results from the first phase of this study concerning historical titers and yields attained for commercial-scale biopharmaceutical production using mammalian cells (e.g., CHO). As with this prior mammalian component, public domain data concerning titers and yields attained with microbially manufactured products were obtained using all available sources.
This study assessed a novel statistical approach using space-filling designs (SFDs) and self-validating ensemble modeling (SVEM) machine learning to efficiently identify key process factors using recombinant adeno-associated virus type 9 (rAAV9) gene therapy manufacturing as a case study. Based on risk assessment of parameters that may impact rAAV9 production, we have evaluated six process parameters using 24-run SFDs generated by the JMP statistical software. SFDs are a new class of design of experiment (DoE) created with the objective of covering the entire design space as completely as possible; this in turn allows more accurate modeling of complex response surface behavior typically found in bioprocesses.
The price per patient for protein-based and monoclonal antibody (mAb) therapies runs into thousands of dollars per patient each year. These therapies cost considerably more to manufacture than small molecules. Hence, if mammalian or insect cell lines expressing high protein titres can be selected and optimized for protein expression using microscale bioreactor models early in development, then manufacturing costs can be reduced significantly…
For the ongoing 2014 Ebola virus outbreak, all viable options and technologies need to be evaluated as potential countermeasures to address this emerging biological threat. Novavax, Inc. has a rapid, practical vaccine development and manufacturing platform with the capability to deliver clinical trial material and, ultimately, commercial doses in response to novel infectious disease agents. This report describes the application of our platform technology for the successful generation, manufacture, and release of a clinical batch of Zaire ebolavirus glycoprotein nanoparticle vaccine three months from project initiation…
This paper describes how a biopharmaceutical product development effort can be structured to identify, understand, and plan activities and goals required to efficiently and rapidly deliver new products and therapies to patients. Although the paper focuses on manufacturing, the approach can be used for all aspects of pharmaceutical product development from establishing an intellectual property position, developing a comprehensive manufacturing plan, to creating a marketing program…
The gram-negative bacterium, Escherichia coli, has a long history in the world of laboratory and industrial processes due to its ease of manipulation and well-understood genome. It is widely cultured under aerobic conditions. High cell density cultivation of E. coli is a powerful technique for the production of recombinant proteins. Indeed, 30% of the FDA-approved biopharmaceuticals on the market are produced in E. coli. An Escherichia coli fermentation run conducted using the Eppendorf BioFlo® 320 bioprocess control station achieved high cell density at 12 hours, as determined by a maximum optical density (OD600) measurement of 215.2. The weights of dry and wet cells were also measured…
The purification of PHB-01 plantibody derived from tobacco leaves imposed difficulties when the plantibody solid-liquid extraction design was performed. Thus, our study focused on assessing a combination of an aqueous two-phase extraction (ATPE) procedure and affinity chromatography for solving some of the issues in plantibody purification. This was done using a complete factorial redesign, different polyethylene glycol (PEG)/K2PO4 proportions, and pH values in each partitioning variant.