Tag: <span>purification</span>

The Baculovirus Expression Vector System (BEVS) is widely used for the production of a broad variety of heterologous proteins that are often secreted into the culture medium as soluble, biologically active, properly glycosylated, and correctly folded. Downstream purification of a secreted protein is considerably easier due to the absence of many contaminating cellular proteins and nucleic acids in the culture supernatant. The BEVS system has also successfully been used for the production of virus-like particles (VLPs) for a broad variety of proteins derived from many different viruses…

Baculovirus Expression Technology

Proteins and their promise for revolutionizing drug discovery have come virtually full circle in just a few decades. The advent of genetic engineering and the emergence of early recombinant proteins such as insulin and interferon dramatically boosted the perceived value of proteins in pharmaceutical research and of protein drugs in particular. Although the lights dimmed somewhat on the promise of therapeutic proteins in subsequent years, more recent times have seen a resurgence of interest in proteins, particularly monoclonal antibodies. Perhaps most telling has been the dawn of the post-genomic era, which has cast a bright spotlight on proteins, long respected as the work-horses of the cell, for their usefulness in exploring cell function, unraveling biochemical pathways, understanding disease, and for their massive value as novel drug targets…

Biologics Production

A growing number of separations’ scientists and process developers are looking beyond protein A sorbents for capture and initial purification of monoclonal antibodies. A variety of strategic and operational goals have prompted examination of alternative immunoglobulin-selective sorbents. Most broadly, many workers wish to eliminate design considerations associated with leached protein A. Also cited is a preference for sorbents that can withstand stringent cleanup using 1 M sodium hydroxide. In some applications, it is desirable to avoid the low-pH elution conditions typically employed with protein A sorbents — conditions that can foster aggregate formation. In still other cases, the target antibody may bind poorly to protein A. Finally, there may be interest in evaluation of immunoglobulin-selective sorbents less costly than protein A sorbents…

Biologics Production

Process development is an investment. As with a personal retirement plan, the importance of making the investment is not in question, yet strategies for when, how much, and where to invest in process development vary significantly from company to company. For a personal retirement plan, the answers to these questions are straightforward: invest as early as you can and as much as you can, and take less risk the closer you get to retirement. This would also be sound advice for investing in process development (substituting “BLA filing” for “retirement”) were it not for two complicating factors. First, the majority of biotherapeutics that enter the clinic fail to make it to the market. This makes a large, early investment in process development less attractive. Second, there is extreme pressure to get into the clinic, and subsequently onto the market, as quickly as possible, minimizing the time available for process development…

Biologics Production Manufacturing

Parvoviruses are one of the most prevalent infectious agents in the laboratory rodent. Their effect on research can range from immune dysfunction that may mislead researchers when interpreting results to lethal effects on animals. Until recently parvovirus infection in mice was thought to be caused by minute mouse virus (MMV) and in rats by rat viral agents in the KRV or H-1 serogroups. Relatively newly discovered viruses in these groups are mouse (MPV) and rat parvoviruses (RPV-1 and 2). Parvoviruses are 15–20 nm in diameter and are single-stranded DNA viruses of about 5,000 nucleotides, which replicate through a double-stranded DNA intermediate. The protein composition consists of three structural or capsid proteins providing the viral coat (VP-1, VP-2, and VP-3) and two non-structural proteins involved in viral replication (NS-1 and NS-2). Among the capsid proteins,VP-2 is the major protein…

Biologics Production Research

At the onset of modern-day biotechnology, products typically fell into two distinct categories, the traditional high volume, low value products (e.g. beer and industrial enzymes) that had come to characterize the biotechnology industry, and low volume, high cost products. Recombinant proteins, the result of technological advances in molecular biology, have come to typify these latter products. Recombinant protein therapeutics have been hugely successful, potentially outstripping production capacity and continue to drive much of the biotechnology. Meanwhile, many recombinant proteins, those characterized as research tools and reagents, are governed by a price-volume relationship typical of industrial enzymes. In a competitive environment, they are fast becoming commodities — price sensitive, packaged as kits, coupled to instrumentation, and relying on heavy marketing and brand recognition. Ominously, the advantage protein therapeutics have enjoyed with patent protection and regulatory constraints on production is being threatened as patents expire and competition from generics increases…

Biologics Production

The Adenovirus Reference Material Working Group (ARMWG) oversaw development of an adenovirus reference material (ARM) with the intent to provide a way to standardize assay measurements from different laboratories. The ARM, which was manufactured in stages by various organizations including Canji (San Diego, CA) and Introgen Therapeutics (Houston, TX), is available from American Type Culture Collection (Manassas, VA). Upon completion of its manufacture, the characterization phase primarily defined viral particle concentration as well as infectious titer for this product. However, many other concurrent characterization studies were conducted including an assessment of vector purity (e.g., host cell DNA, host cell protein, reversed-phase HPLC), a short-term field use and shipping stability study, and a long-term stability study. Also included in these studies was a coordinated effort to determine the complete DNA sequence of the ARM vector genome…

Nucleic Acids Viral Reference Materials Viral Vectors

Influenza is a highly contagious, acute viral respiratory disease that occurs seasonally in most parts of the world. The infection resides primarily in the respiratory tract (nose, throat and bronchi), but causes both local and systemic symptoms including fever, chills, cough, headache, myalgia, sore throat, and malaise. Influenza-related pneumonia is the main complication of infection. Annual epidemics cause significant morbidity and mortality worldwide. Each year, influenza infections result in an average of 110,000 hospitalizations, approximately 20,000 of which result in death. These deaths are heavily concentrated (>90%) among persons who are at highest risk for influenza-related complications — elderly adults (over 65), children under age five, patients with pre-existing respiratory or cardiovascular disease, and women in the third trimester of pregnancy. Thus, the prevention of influenza virus infection is a major public health priority…

Baculovirus Expression Technology Viral Vectors

Various types of viral vectors are being employed extensively as gene therapeutics to treat cancer and genetic diseases. Among the viruses that have been produced for human clinical trials (i.e. retrovirus, adenovirus, poxvirus, adeno-associated virus, and herpesvirus vectors) adenoviruses exhibit the lowest pathogenicity yet still infect an extensive range of cell types with high efficiency. These key characteristics make recombinant adenoviruses efficient gene-delivery vehicles and excellent research tools. However, the time-consuming and complex processes of generation, amplification, purification, and quality testing associated with production of recombinant adenoviruses make it difficult for many researchers to utilize these vectors. This is particularly true with respect to cell culture optimization and the virus propagation protocols employed in vector production. In this regard, the development of innovative cell culture techniques has become vital for optimizing vector production for gene therapy…

Biologics Production Cell & Gene Therapy Viral Vectors

The use of virus-based vectors for gene transfer has become an important delivery method for both in vitro applications and in vivo experimental clinical therapies. In small-scale experimental applications, most vectors can easily be concentrated and purified by simple methods (for example, ultracentrifugation.) However, it is challenging to scale up centrifugation-based vector purification methods for the large-scale production required for clinical use. In particular, when considering production of vector for human use, additional steps such as final sterilization by filtration must be taken to ensure the purity and safety of the vector preparation. Because the vector aggregates when pelleted by centrifugation, sterile filtration will eliminate vector particles from the solution. An efficient vector purification process that maintains vector potency is an important step in vector production for gene therapy…

Cell & Gene Therapy Viral Vectors