Stem cell-based regenerative medicine has great potential to advance the therapeutic treatment of human diseases. Among the various stem cell platforms, mesenchymal stem cells (MSCs) represent one of the most promising options. Currently, there are over 500 clinical trials based on MSCs registered at the NIH’s ClinicalTrials.gov website. Although successful expansion of MSCs in vitro has been well-established, higher-yield, billion-cell expansion of MSCs remains a bottleneck. In this study, we successfully demonstrated large-scale culture of human adipose-derived mesenchymal stem cells (AdMSCs) in an industrial, single-use vessel at 3.75 L scale.
Category: <span>Research</span>
Cation exchange chromatography is typically utilized in bind-and-elute mode for monoclonal antibody purification. However, during purification process development for a novel monoclonal antibody (MAb) intended for clinical use, it was determined that bind-and-elute conditions were not sufficient for removing significant levels of antibody aggregate. Based on preliminary purification data, an alternative purification method, operation of the cation exchange process in flow-through mode, was investigated.
Raman spectroscopy offers an attractive solution for monitoring key process parameters and predictive modelling in cell culture processes using transgenic Chinese hamster ovary (CHO) cells. Frequent in-line measurements offer the potential for advanced control strategies. However, an erroneous value created by analytical signal noise is a significant issue that can affect process controls negatively. One such challenge is to differentiate the signal reflecting process changes, ranging from random to gross error, in a timely manner so the process control system can respond to these changes and maintain adequate control.
Type 2 diabetes is a major risk factor for cardiovascular disease-related morbidity and mortality. There are several therapies for type 2 diabetes management, but optimal glycemic control has not been achieved yet. A large number of patients fail to attain an ideal glycemic target, and only a few drugs have demonstrated effective control of glycated hemoglobin (HbA1c) numbers below 7%. The biggest hurdles for implementing long-term, effective therapies are hypoglycemia and weight gain. Most pharmaceuticals currently available act to increase insulin availability through administration, secretion, or by increasing insulin sensitivity. Others act by delaying the delivery and absorption of carbohydrates from the gastrointestinal (GI) tract or by increasing urinary glucose excretion.
Cells cultured in 2D can differ in terms of both physiology and cellular responses compared with cells in vivo. This has led to a surge in the popularity of using 3D culture techniques as mounting evidence suggests that culturing cells in 3D is more representative of the in vivo environment, even to the extent that the gene expression profiles of cells from 3D cultures more accurately reflect clinical expression profiles than those observed in 2D cultures. 3D culture offers the potential for more accurate models of drug delivery and efficacy, as well as numerous clinical and research applications, and is becoming increasingly capable of integrating into high-throughput activities. Spheroids, or sphere cultures, have become an especially exciting area of 3D in vitro culture due to their great potential for use in studies that investigate growth and function of both malignant and normal tissues. These sphere cultures have contributed considerably to our knowledge of cellular responses thanks to the accuracy with which they reflect the in vivo system.
The production of biopharmaceutical drugs typically involves a biological expression within a bacterial, yeast, or mammalian cell expansion system. Getting to the final product requires multiple purification steps, from primary clarification to the final formulation and sterile filtration. The aim of the initial purification steps is not to purify the stream perfectly but rather, to prepare the stream for finer and more specific purification steps further downstream. Apart from efficiently removing contaminants, the clarification stages also need to maintain high product recovery whilst being consistent and robust.
Biopharmaceutical manufacturing will continue to be increasingly challenging as medical knowledge and understanding rapidly advance. Many new therapies and products will utilize cellular, viral, genetic, and epigenetic approaches along with a repertoire of increasingly complex proteins targeting a rapidly increasing inventory of newly discovered biomarkers. Manufacturing these products efficiently, consistently, and reliably will require sophisticated manufacturing approaches, methods, and controls. In addition, growing patient, societal, and even regulatory pressures demand that new therapeutics be developed and manufactured quickly, reliably, and efficiently.
Biopharmaceutical manufacturing will continue to be increasingly challenging as medical knowledge and understanding rapidly advance. Many new therapies and products will utilize cellular, viral, genetic, and epigenetic approaches along with a repertoire of increasingly complex proteins targeting a rapidly increasing inventory of newly discovered biomarkers. Manufacturing these products efficiently, consistently, and reliably will require sophisticated manufacturing approaches, methods, and controls. In addition, growing patient, societal, and even regulatory pressures demand that new therapeutics be developed and manufactured quickly, reliably, and efficiently. Historically, manufacturing has been viewed and managed in terms of minimizing patient safety risks.
Rocker bag bioreactors have been used successfully in cultivating cells because they provide good nutrient distribution and cell suspension while eliminating the need to validate cleaning and sterilization. Therefore, this study examined the long-term performance of a 50 L single-use bag bioreactor on a rocking platform in CB.Hep-1 monoclonal antibody (mAb) production. For such a purpose, the bioreactor was operated in a continuous mode with a mixture of serum-free media (SFM) for 62 days, and with protein-free medium (PFM) for another 62 days…
The impact of viruses—in geopolitical human health issues, in the production of vaccines and recombinant proteins, and in gene therapy and cancer treatments—highlights the need for a better understanding of the systems that are dependent upon them. A primary barrier to recognizing the full potential of these life-saving biomedical approaches is the scarcity of analytical methods capable of providing biologically relevant information without hindering the pace of development and production. ViroCyt® is a Colorado-based biotechnology company with one overriding focus: Enabling the rapid and specific quantification of viruses and virus-related particles. The ViroCyt Virus Counter® was designed to meet this objective.
