Singapore’s vision is to become a global hub for the biomedical sciences (BMS) with world-class capabilities ranging from basic and clinical research to manufacturing and healthcare delivery. This vision encompasses pharmaceuticals, biotechnology, medical technology, and healthcare services. Singapore’s BMS initiative was launched in June 2000 with the goal of developing the industry into a key pillar of Singapore’s economy. It is overseen by a Ministerial Committee chaired by Deputy Prime Minister Dr. Tony Tan and implemented by an executive committee led by Mr. Philip Yeo, who is chairman of the Agency for Science, Technology, and Research (A*STAR) and co-chairman of Singapore’s Economic Development Board (EDB)…
Category: <span>Research</span>
The last decade witnessed remarkable scientific and technological advances in a number of scientific disciplines, including cell biology, microbiology, molecular biology, oncology, virology, infectious diseases, diagnostic technologies, analytical chemistry, instrumentation, and informatics. These advances have had a major impact on medicine, which has experienced fantastic progress in improving disease diagnosis, treatment, and overall patient care. Despite the advances in developing ever more sophisticated technologies and increasing the understanding of disease, new maladies continue to emerge. This is especially true for infectious ailments. Despite great developments in epidemiology, diagnostics, and agent detection technologies, as well as a comprehensive understanding of the biology of many known infectious agents and their virulence factors, we also are witnessing a dramatic increase in the number of new agents and diseases….
Parvoviruses are one of the most prevalent infectious agents in the laboratory rodent. Their effect on research can range from immune dysfunction that may mislead researchers when interpreting results to lethal effects on animals. Until recently parvovirus infection in mice was thought to be caused by minute mouse virus (MMV) and in rats by rat viral agents in the KRV or H-1 serogroups. Relatively newly discovered viruses in these groups are mouse (MPV) and rat parvoviruses (RPV-1 and 2). Parvoviruses are 15–20 nm in diameter and are single-stranded DNA viruses of about 5,000 nucleotides, which replicate through a double-stranded DNA intermediate. The protein composition consists of three structural or capsid proteins providing the viral coat (VP-1, VP-2, and VP-3) and two non-structural proteins involved in viral replication (NS-1 and NS-2). Among the capsid proteins,VP-2 is the major protein…
G protein-coupled receptors (GPCRs) comprise a “superfamily” of cell surface receptors that play a prominent role in cell signalling and are classified into more than 100 subfamilies according to sequence, ligand structure, and receptor function. They are cell surface receptor proteins with seven transmembrane domains which transduce extracellular signals to the interior of cells through heterotrimeric G proteins. GPCRs’ exposure at the exterior cell surface and strong role in cell regulation has provided a rich target family for small compound therapeutics. Of the estimated 35,000 genes in the human genome, approximately 750 encode for GPCRs; half likely encoding sensory receptors, the remaining half representing potential drug targets. Only about 30 of these potential targets are currently modulated by existing pharmaceuticals with approximately 400 remaining potential pharmaceutical targets for validation…
Tissue engineering is an emerging area of biotechnology that will provide replacement tissues for patients, as well as complex, functional biological systems for research and testing in the pharmaceutical industry. A new research area of tissue engineering is the investigation of how living cells interact with and respond to synthetic biomaterial surfaces. The clinical developments that underlie that research include a number of novel tissue-engineered medical products (TEMPs)…