Tag: <span>fetal bovine serum</span>

Tissue culture growth medium derives a substantial fraction of its growth-stimulating activity from the fetal bovine serum (FBS) commonly used as a supplement. In addition to the source of serum, non-essential additives such as colorized pH indicator dyes may also affect the growth stimulating properties of complete media. We show here that both of these culture medium components can dramatically affect gene expression in vitro. Using a custom gene expression chip for herpes simplex virus 1, we demonstrated significant changes of expression levels in several categories of viral genes including the immediate early viral transcription factors ICP0 (p < 0.05), ICP4 and ICP27 (both p < 0.001). This dependence of virus growth on serum source and other medium components have implications for not only in vitro virus studies, but also viral vector design and vaccine efficacy. This is especially true when examining a large DNA pathogen that potentially contains response elements that are common in the mammalian genome...

Biologics Production

Viral clearance studies are required for pharmaceuticals derived from human and/or animal sources such as recombinant proteins produced in eukaryotic cell lines, human blood products and vaccines, and even for some critical class III medical devices. It is mandatory to demonstrate that steps in the manufacturing process are capable of inactivating or removing potential viral contaminants. For this, a laboratory-scale (downscale) of the process step is developed and challenged with different model virus solutions. The viral concentrations are quantitatively determined in the feed material and the relevant product fraction. The ratio of both defines the reduction in virus and specifies the viral inactivation or viral removal capacity of the investigated process step…

Biologics Production

In today’s volatile sera market, it is critical that sera users worldwide thoroughly review their supply relationships and update sourcing and risk mitigation strategies. BioProcessing Journal’s recent article by Siegel and Foster highlighted the impact of selecting the appropriate country of origin as one criterion for purchasing decisions. Many more vital selection criteria exist to ensure a sera supplier provides long-term assurance of supply and integrity of supply. This article identifies critical questions sera users should ask their suppliers and explains why they should ask them…

Biologics Production

Safety is typically viewed, perhaps unconsciously, as the result of a collection of factors, conditions, or behaviors. For example, consider “safety” in the context of personal, financial, or travel. With each, safety is defined as a set of component risks that have been managed to satisfactory levels for a particular situation. The same is true for product safety and risk, whether it be for raw materials or finished goods. The “safe” use of fetal bovine serum (FBS) is achieved by the management of controllable risks to a level that is acceptable for each particular application. For example, risk reduction requirements for research applications are not as stringent as for diagnostic, therapeutic, or manufacturing applications. Each end-user must decide on the level of risk reduction that is appropriate for their application…

Biologics Biologics Production Bioreactor Scale-Up Cell & Gene Therapy Cell Lines Fed-Batch Bioreactor Process HEK293 Mammalian Cell Culture Manufacturing Regulatory Viral Reference Materials Viral Vectors

For over 80 years, fetal bovine serum (FBS) and other animal-derived materials have been widely used in the production of vaccines, and more recently, biotherapeutics, for both human and animal applications. Ever since FBS was initially developed as a cell culture reagent, there have been efforts made to avoid the use of this critical commodity. The International Serum Industry Association (ISIA) recognizes the requirement for robust risk assessment and management, and has several ongoing programs designed to help mitigate the risk of using animal-derived materials. This article will provide an outline of the state of the industry and of these programs…

Biologics Biologics Production Bioreactor Scale-Up Cell & Gene Therapy Cell Lines Fed-Batch Bioreactor Process HEK293 Mammalian Cell Culture Manufacturing Regulatory Viral Reference Materials Viral Vectors

The treatment of animal serum by gamma irradiation, for the purpose of mitigating the risk of introducing a pathogen (virus, mollicute, or other microbe) into a cell culture, is a process that has been executed (and perhaps understood) primarily by irradiation contractors utilized by serum manufacturers. The selection of appropriate exposure conditions and irradiation doses is driven by a number of critical factors including: (1) the validation and control of the irradiation process itself; (2) the efficacy of the applied irradiation dose range for inactivating pathogens of interest; (3) determination and control of critical process attributes; (4) the potential impacts of these irradiation dose levels on the serum being irradiated; and finally, (5) the potential impact of irradiated serum on the medicinal product and the associated manufacturing process where serum is ultimately used. In order to increase awareness of these topics throughout the cell culture community, we have addressed these critical factors in the current review…

Biologics Biologics Production Bioreactor Scale-Up Cell & Gene Therapy Cell Lines Fed-Batch Bioreactor Process HEK293 Mammalian Cell Culture Manufacturing Regulatory Viral Reference Materials Viral Vectors

This article serves as an introduction to a series of papers that are being authored under the sponsorship of the International Serum Industry Association with the purpose of establishing best practices for processes employed in the gamma irradiation of animal serum. It is comprised of a discussion about the role of serum in cell culture and the management of the associated risks. Additional articles in the series will address a number of topics of interest to the cell culture community, including, but not limited to: (1) performance of absorbed dose mapping for irradiators; (2) validation of the efficacy of pathogen reduction during gamma irradiation of animal serum; (3) comparability evaluation of irradiated serum; (4) product management throughout the irradiation process; and (5) ensuring a quality outcome when using gamma irradiation. The intent of the series is to increase awareness of the scientific community regarding the conduct of gamma irradiation and the strengths and limitations of this serum treatment approach for achieving the goals of adventitious agent risk mitigation.

Biologics Biologics Production Bioreactor Scale-Up Cell & Gene Therapy Cell Lines Fed-Batch Bioreactor Process HEK293 Mammalian Cell Culture Manufacturing Regulatory Viral Reference Materials Viral Vectors

With an ever-increasing number of countries involved in the collection, processing and marketing of serum, it is necessary to understand the relevance and rules relating to geographic region of origin. This article reviews and discusses the safety and quality of FBS, rules of origin, consumer market-motivated misinformation, and how mislabeled serum can be detected. The article concludes that high-quality serum needed for scientific research and biopharmaceutical products can originate from any country, as long as it is collected, imported, and processed following all the applicable regulatory and industry requirements…

Biologics Production Regulatory

It is a common belief that fetal bovine serum (FBS) collected from certain geographical regions, such as New Zealand, is of superior quality to material collected from South America. Whilst it is true that origin does have an impact on the price of serum, it does not affect the quality or biological performance of the product. FBS collected under similar conditions from any geographical region will demonstrate comparable ability to support cell growth. For FBS, the term “quality” is frequently confused with “health status.” It is the health status of the geographical region from which the serum is collected that will dictate its potential use, the availability of material for import, and eventually, the price. It should be noted that health status should be considered a result of more than just the geographical source of the material, but also the regulatory infrastructure and how well regulations are enforced by the countries within that region…

Biologics Production Risk Analysis and Management

Since its inception in 2006, the International Serum Industry Association (ISIA) has been focused on providing a more informative characterization standard for animal sera. A fundamental aspect of this effort has been the development of a program focused on product traceability from abattoir to end-user. This goal has been achieved in part by implementing the ISIA-sponsored audit program. Serum vendors determined to be compliant with all audit requirements are awarded ISIA Traceability Certifications. In conjunction with Oritain Global Ltd, ISIA has developed and implemented a method for establishing geographical origin of serum products. The method and its capability of determining geographical origin are described in this paper…

Regulatory