This study assessed a novel statistical approach using space-filling designs (SFDs) and self-validating ensemble modeling (SVEM) machine learning to efficiently identify key process factors using recombinant adeno-associated virus type 9 (rAAV9) gene therapy manufacturing as a case study. Based on risk assessment of parameters that may impact rAAV9 production, we have evaluated six process parameters using 24-run SFDs generated by the JMP statistical software. SFDs are a new class of design of experiment (DoE) created with the objective of covering the entire design space as completely as possible; this in turn allows more accurate modeling of complex response surface behavior typically found in bioprocesses.
Category: <span>Process Automation</span>
The price per patient for protein-based and monoclonal antibody (mAb) therapies runs into thousands of dollars per patient each year. These therapies cost considerably more to manufacture than small molecules. Hence, if mammalian or insect cell lines expressing high protein titres can be selected and optimized for protein expression using microscale bioreactor models early in development, then manufacturing costs can be reduced significantly…
The production of biopharmaceutical drugs typically involves a biological expression within a bacterial, yeast, or mammalian cell expansion system. Getting to the final product requires multiple purification steps, from primary clarification to the final formulation and sterile filtration. The aim of the initial purification steps is not to purify the stream perfectly but rather, to prepare the stream for finer and more specific purification steps further downstream. Apart from efficiently removing contaminants, the clarification stages also need to maintain high product recovery whilst being consistent and robust.
The impact of viruses—in geopolitical human health issues, in the production of vaccines and recombinant proteins, and in gene therapy and cancer treatments—highlights the need for a better understanding of the systems that are dependent upon them. A primary barrier to recognizing the full potential of these life-saving biomedical approaches is the scarcity of analytical methods capable of providing biologically relevant information without hindering the pace of development and production. ViroCyt® is a Colorado-based biotechnology company with one overriding focus: Enabling the rapid and specific quantification of viruses and virus-related particles. The ViroCyt Virus Counter® was designed to meet this objective.
