One of the biggest challenges in the production of recombinant therapeutic proteins, monoclonal antibodies, and vaccines is the clarification and separation of the product (typically a protein) from the cell culture or fermentation broth. The desired product is present in low concentrations and must be efficiently separated from the other components present in the bioreactor fluid. An overall objective in developing a clarification process is to achieve the highest level of product recovery (yield) and contaminant removal with the fewest number of unit processes. Understanding how each operational step affects the performance of the next step downstream is the challenge at hand. Centrifugation, in combination with depth filtration, is gaining acceptance as the preferred method for the removal of cells, cell debris, colloids, insoluble precipitants, aggregates, and other materials found in mammalian cell culture and bacterial fermentation fluids…
Tag: <span>process development</span>
Process development is an investment. As with a personal retirement plan, the importance of making the investment is not in question, yet strategies for when, how much, and where to invest in process development vary significantly from company to company. For a personal retirement plan, the answers to these questions are straightforward: invest as early as you can and as much as you can, and take less risk the closer you get to retirement. This would also be sound advice for investing in process development (substituting “BLA filing” for “retirement”) were it not for two complicating factors. First, the majority of biotherapeutics that enter the clinic fail to make it to the market. This makes a large, early investment in process development less attractive. Second, there is extreme pressure to get into the clinic, and subsequently onto the market, as quickly as possible, minimizing the time available for process development…
With the advent of whole cell-based therapeutics has come a growing standardized quality control and quality assurance of the processes employed for developing and manufacturing cellular materials, similar to the controls over traditional drugs and biologicals. Cellular therapeutics present unique process and quality control challenges due to the innate complexities of living cells, making it important to use whole cell assays to provide detailed pictures of the status and consistency of cell preparations that will be used to treat patients. This article illustrates how a cellular assay from Guava Technologies addresses these issues…