Tag: <span>autologous cell therapy</span>

Cell therapy has emerged as a promising technology that involves implanting live cells to replace/repair and restore normal function of damaged tissue. Autologous chondrocyte implantation (ACI) has been proven effective for the regeneration of articular cartilage in defective cartilage tissue. The process starts with the collection of healthy tissue from an eligible patient, then isolation and expansion of desired cells in vitro under good manufacturing practice (GMP) conditions, qualification before release of the final cell product, and finally, implantation into the patient. The promise to deliver autologous cell therapies has its own challenges in robust and reproducible manufacturing. To commercialize a cell therapy, it is imperative that a robust and scalable manufacturing process is set up that is consistent, in terms of quality and quantity, in order to deliver the intended therapeutic effect.

We analysed the manufacturing parameters of over 100 cartilage samples that were used to deliver our proprietary, commercialized autologous cell therapy. The paper addresses the most cited challenges in the manufacturing of autologous cell therapies and describes a robust process of in vitro human chondrocyte cell culture. Also included are key factors in manufacturing for attaining a high-quantity and quality product for articular cartilage regeneration.

Cell & Gene Therapy Manufacturing

In recent years, cell therapy has been suggested as a promising approach for repair and regeneration of damaged tissues. VesCellā„¢, a blood-derived autologous cell therapy product consisting of ex vivo enriched angiogenic cell precursors (ACPs) was developed by TheraVitae for the treatment of severe heart diseases. A non-mobilized, blood-derived cell population consisting of low density cells, termed synergetic cell population (SCP), was isolated and cultured in the presence of serum-free medium (X-Vivo 15, Lonza, Walkersville, MD, USA) supplemented with growth factors and autologous serum to yield VesCell. Significant cell numbers (>50×106) exhibiting morphological, immunocytochemical, and functional characteristics of the angiogenic cell lineage were obtained from blood samples. The ACPs expressed the hematopoietic stem cell (HSC) markers CD34, CD133 and CD117, as well as specific angiogenic markers such as vascular endothelial growth factor receptor 2 (VEGFR2) (receptor 2 [R2] is also known as kinase domain region [KDR]), CD144, and CD31ā€¦

Cell & Gene Therapy Manufacturing Uncategorized

Xcyte Therapies has recently introduced a bioreactor-based process for the GMP manufacture of autologous activated T cells, Xcellerated T Cellsā„¢, for clinical trials. Using a single customized disposable 20-L Cellbagā„¢ with a working volume of 10 L on a customized Wave Bioreactor platform (Wave Biotech, Bridgewater, NJ), the Xcellerateā„¢ III Process has supplanted the 60-L static Xcellerate II Process that used 60 bags cultured in a standard incubator. Compared to the Xcellerate IIā„¢ Process, the Xcellerate III Process significantly reduces the overall labor, the number of culture containers, bag spikes, and sterile connections required, as well as reducing the process volume and the cost of goods, while more than quadrupling the final cell density and doubling the facility capacity. These process improvements are achieved without compromising final product composition or quality…

Biologics Production Manufacturing