Tag: <span>process control</span>

When working on biotherapeutic process development, the analysis of spent cell culture media is often a daily practice during the optimization of bioreactor conditions and media composition. The introduction of parallel microbioreactor systems has decreased the complexity and costs of process development by allowing for concurrent studies of multiple bioreactor and media variables. However, the bioreactors’ small volumes (typically less than 250 mL) limit the volume of media one can extract for daily sampling. We describe a means to analyze spent media with an integrated microchip capillary electrophoresis mass spectrometer (CE-MS) analyzer with minimal sample volume requirements and rapid analysis time. The platform was evaluated with a parallel microbioreactor system (ambr® 250) culturing a Chinese hamster ovary (CHO) cell line stressed by varying levels of ammonia (NH3).

The spent media analysis identified net increases in the levels of the amino acids (AA) Ala, Arg, Asp, Glu, Gly, His, Ile, Leu, Lys, Phe, Thr, Trp, Tyr, and Val in all bioreactors, with Gly levels showing increases in excess of 8-fold initial levels in all bioreactors. Other media components either steadily decreased in concentration or were completely depleted by the end of culture. For example, Asn was depleted in all of the unstressed and 10 mM NH3-stressed bioreactors, but was approximately twice as high as the initial levels in the 30 mM NH3-stressed bioreactors at the end of the culture periods. Also, the 30 mM NH3-stressed condition may have caused either complete degradation or rapid consumption of choline, since it was no longer present starting at the t = 36 h sampling. Overall, the monitored media components were observed to have independent trajectories based on feeding and consumption by the cells, and depending on the stressed condition. The capability to have more frequent spent media analyses would allow for real-time observation of these process changes and associated control strategies.

Biologics Production

This is the sixth and last in a series of articles describing and demystifying the processes involved in the gamma irradiation of serum. This serum treatment is intended to mitigate the risk of introducing adventitious contaminants into cell cultures. In this article, we discuss the regulatory environment under which gamma irradiation of serum is performed, and provide additional details on best practices for documentation of the irradiation process, selection of the contract irradiator, evaluation of risk versus benefit needed to arrive at the radiation dose range to be used, as well as an understanding of the level of remaining risk following irradiation at that dose range. Gamma irradiation should not be viewed as a means of totally eliminating risk, but rather as a means of reducing the risk of introducing adventitious agents into cell cultures. A balance must be achieved between the desire to eliminate all adventitious contaminants, and the need to retain the desired performance characteristics of the serum, once irradiated…

Regulatory Risk Analysis and Management

The current draft of ICH Q12 appears to have taken several steps backward in the pursuit of the manufacturing excellence initiated by ICH Q8 (R2) pharmaceutical development and expanded by FDA’s 2011 process validation guidelines…

Manufacturing Regulatory

Achieving very high levels of pharmaceutical product quality, particularly for the next generation of biologics, will require proactive use of a broad range of quality and process development tools throughout the therapeutic’s development and manufacturing lifecycle. These tools are most effective when integrated using an expanded form of FDA’s 2011 process validation guidelines. This article explains how process validation can be combined with quality by design (QbD), ICH Q8 design space (DS) and control strategies (CS), process analytical technology (PAT), and quality risk management (QRM) tools to provide a path to manufacturing very high-quality products. The approach establishes clear goals and then proactively builds appropriate control systems during process development to assure continuous control and verification of all manufacturing activities. Prospectively using the tools over the complete manufacturing lifecycle, from preclinical through commercial manufacturing, is particularly important to assure comparability from early product research and development all the way to commercialization. The continued evolution of these quality tools, as well as building new tools, will provide a path for the pharmaceutical industry to reach and maintain Six Sigma levels of product quality…

Manufacturing Risk Analysis and Management

Automation in bioprocessing was a keynote topic at the ISBioTech 4th Annual Fall Meeting (December 12–14, 2016) in Virginia Beach, VA. Automation is becoming increasingly critical as biomanufacturers seek to improve their production efficiency and critical risk analysis, and reduce errors. But despite recent improvements and innovations, the actual integration of devices, software, sensors, and production equipment remains a challenge. In BioPlan Associates’ recent analysis of capacity and production, we found that nearly 20% of the biopharma industry sees increasing productivity and efficiency as the #1 critical issue the industry needs to focus on today. And over two-thirds expect better control of their processes. An obvious way to achieve these goals is through automation…

Manufacturing

Accepting any identified and evaluated risk is “taking a smart risk.” The acceptance decision, before or after mitigation, is a complex and sometimes difficult choice that is based on the information generated during the ICH Q9 quality risk management (QRM) exercise along with many subjective viewpoints impacted by previous experience, knowledge, risk appetite, and bias. This paper provides an approach for understanding and making acceptance decisions centered around the risk-rating methods that define the severity (harm) and uncertainty (likelihood) of the risk’s consequence occurring. It also builds on concepts developed in the first two parts of this QRM series to provide an overall framework for identifying, evaluating, managing, and accepting a wide variety of biopharmaceutical development and manufacturing risks…

Risk Analysis and Management

Of the available on-line biomass assays, the radio-frequency (RF) impedance method has a clear advantage for current good manufacturing process (cGMP) because it is an unambiguous reflection of viable cell bio-volume rather than the total number of cells. Although other more approximate methods are available for cells in suspension, RF impedance is practically the only on-line method available for cells in suspension, attached to microcarriers and immobilized cells at high cell densities. Data are presented to show how live cell concentrations are derived from an RF impedance-derived instrument…

Manufacturing

Over the past decade there has been a steady increase in the number of biotherapeutics requiring high doses and long term administration. Most notable among these are monoclonal antibodies (MAbs) and fusion proteins comprised partially of antibody molecules. Column chromatography is a commonly applied purification method for downstream processing of biotherapeutics, and there is considerable pressure to process much greater volumes at a faster rate. For recombinant proteins and MAbs, a variety of chromatographic methods are employed, including affinity, ion exchange, hydrophobic interaction, and to a lesser extent, immobilized metal affinity and gel filtration. Improving process control for chromatography operations is essential for biopharmaceutical manufacturers to process larger volumes and overcome capacity shortfalls. As the past ten years have seen increasing volumes of MAb-based drugs, there have been significant innovations to address growing productivity requirements. Dominant among these has been high throughput media capable of isolating product at faster rates than previously achievable…

Biologics Production