Ophthalmic disorders are a group of diseases with a rapidly increasing frequency associated with an increase in the aged population. Patients with potentially blinding diseases have become one of the largest segments of the healthcare field, with more than 50 million patients in the United States alone. Their sight is threatened by diseases such as age-related macular degeneration (AMD), diabetic retinopathy (DR), glaucoma, or retinitis pigmentosa (RP). Until recently, there were essentially no effective treatment options to halt the progression of chronic, potentially blinding diseases. Biotechnological advances have resulted in the development of a variety of promising new protein factors that, if delivered to diseased cells of the retina, hold promise for treatment by interrupting or reversing the disease process…
Tag: <span>cellular engineering</span>
The Intraocular Delivery of Neuroprotective Factors to the Retina Using Encapsulated Cell Technology
Within the biopharmaceutical industry, mammalian cell culture is extensively used to manufacture a various biopharmaceutics uncluding antibodies, interferons, hormones, crythropoietin, clotting factors, immunoadhesins, and vaccines. The market for monoclonal antibodies (MAbs) alone is expected to grow 30% a year and reach sales of nearly $6.5 billion in 2004. The vast majority of these biotherapeutics are secreted glycoproteins obtained from mammalian cell lines such as: Chinese hamster ovary (CHO), human embryonic kidney 293 (HEK-293 or 293). NS0, and baby hamster kidney (BHK). As is the goal with most commercial products, biotechnologists strive to generate these valuable proteins in the highest yields possible in order to utilize mammalian bioreactor facilities efficiently…