Heterologous expression of membrane proteins remains a bottleneck for structural characterization by x-ray crystallography. Such proteins represent approximately 30% of the proteome and are not sufficiently represented in the Protein Data Bank (PDB). G-protein-coupled receptors (GPCRs) are an area of particular interest as it is estimated that one third of current FDA approved drugs act through this class of receptors. We have been studying rhodopsin with an interest in determining the conformational change that leads to signal transduction in this class of receptors. Although there has been some success in expressing select members of the large GPCR family in bacterial systems, the best characterized expression systems have generally been in mammalian tissue culture…
Tag: <span>membrane proteins</span>
Membrane proteins such as hERG (human Ether-a-go-go Related Gene) and GPCRs (G-protein-coupled receptors) have been widely used as favorite targets for discovery of therapeutic drugs to treat cardiac arrhythmia, diabetes, epilepsy, cancer, glaucoma and many other indications. They are also widely used in cell-based assays to test new pharmaceuticals for safety in the early stages of drug discovery…