The rapidly growing interest for cell and gene therapies demands the development of robust, scalable, and cost-effective bioprocesses for viral vector production. For the production of lentiviral vector (LVV) at high titers, we have developed an inducible packaging system in suspension HEK293 cells from which we can also generate stable producer cell lines, in serum-free conditions. To evaluate the potential of this platform, we have generated a stable cell line that produces an LVV encoding a green fluorescent protein (GFP) and obtains 10E+07 to 10E+08 transduction units (TU)/mL at the 4 L, 10 L and 50 L scales. Functional LVV titers were maintained across all scales in bioreactors with different configurations and geometries indicating process robustness. Further, the addition of 10% feed increased the volumetric productivity by 3.5-fold in comparison to batch production, making our platform suitable for large-scale LVV production and showing a real potential for commercial manufacturing.
Tag: <span>depth filtration</span>
One of the biggest challenges in the production of recombinant therapeutic proteins, monoclonal antibodies, and vaccines is the clarification and separation of the product (typically a protein) from the cell culture or fermentation broth. The desired product is present in low concentrations and must be efficiently separated from the other components present in the bioreactor fluid. An overall objective in developing a clarification process is to achieve the highest level of product recovery (yield) and contaminant removal with the fewest number of unit processes. Understanding how each operational step affects the performance of the next step downstream is the challenge at hand. Centrifugation, in combination with depth filtration, is gaining acceptance as the preferred method for the removal of cells, cell debris, colloids, insoluble precipitants, aggregates, and other materials found in mammalian cell culture and bacterial fermentation fluids…