The success of tissue-engineered cartilage constructs (TECCs) as treatment options for healing cartilage defects can only be achieved if suitable preservation methods are found that can maintain their viability and function. Simply lowering the temperature of cells and tissues to below their freezing point invariably destroys them due to ice crystals that form in the water-laden cells and tissues. In addition, high salt concentrations that result from removal of water due to ice formation create a toxic imbalance. If the formation of ice crystals can be minimized while still halting metabolic activity of cells at low temperatures, then the viability and functionality of the preserved tissue may be maintained…