Gamma Irradiation of Animal Serum: Validation of Efficacy for Pathogen Reduction and Assessment of Impacts on Serum Performance

by Mark Plavsic, PhD, DVM, Raymond Nims, PhD, Marc Wintgens, and Rosemary J. Versteegen, PhD
Volume 15, Issue 2 (Summer 2016)

The treatment of animal serum by gamma irradiation, for the purpose of mitigating the risk of introducing a pathogen (virus, mollicute, or other microbe) into a cell culture, is a process that has been executed (and perhaps understood) primarily by irradiation contractors utilized by serum manufacturers. The selection of appropriate exposure conditions and irradiation doses is driven by a number of critical factors including: (1) the validation and control of the irradiation process itself; (2) the efficacy of the applied irradiation dose range for inactivating pathogens of interest; (3) determination and control of critical process attributes; (4) the potential impacts of these irradiation dose levels on the serum being irradiated; and finally, (5) the potential impact of irradiated serum on the medicinal product and the associated manufacturing process where serum is ultimately used. In order to increase awareness of these topics throughout the cell culture community, we have addressed these critical factors in the current review...

Plavsic M, Nims R, Wintgens M, Versteegen R. Gamma irradiation of animal serum: validation of efficacy for pathogen reduction and assessment of impacts on serum performance. BioProcess J, 2016; 15(2): 12–21.

Posted online July 30, 2016.