The rapidly growing interest for cell and gene therapies demands the development of robust, scalable, and cost-effective bioprocesses for viral vector production. For the production of lentiviral vector (LVV) at high titers, we have developed an inducible packaging system in suspension HEK293 cells from which we can also generate stable producer cell lines, in serum-free conditions. To evaluate the potential of this platform, we have generated a stable cell line that produces an LVV encoding a green fluorescent protein (GFP) and obtains 10E+07 to 10E+08 transduction units (TU)/mL at the 4 L, 10 L and 50 L scales. Functional LVV titers were maintained across all scales in bioreactors with different configurations and geometries indicating process robustness. Further, the addition of 10% feed increased the volumetric productivity by 3.5-fold in comparison to batch production, making our platform suitable for large-scale LVV production and showing a real potential for commercial manufacturing.
Category: <span>Cell & Gene Therapy</span>
The rapidly growing interest for cell and gene therapies demands the development of robust, scalable, and cost-effective bioprocesses for viral vector production. For the production of lentiviral vector (LVV) at high titers, we have developed an inducible packaging system in suspension HEK293 cells from which we can also generate stable producer cell lines, in serum-free conditions. To evaluate the potential of this platform, we have generated a stable cell line that produces an LVV encoding a green fluorescent protein (GFP) and obtains 10E+07 to 10E+08 transduction units (TU)/mL at the 4 L, 10 L and 50 L scales. Functional LVV titers were maintained across all scales in bioreactors with different configurations and geometries indicating process robustness. Further, the addition of 10% feed increased the volumetric productivity by 3.5-fold in comparison to batch production, making our platform suitable for large-scale LVV production and showing a real potential for commercial manufacturing.
The rapidly growing interest for cell and gene therapies demands the development of robust, scalable, and cost-effective bioprocesses for viral vector production. For the production of lentiviral vector (LVV) at high titers, we have developed an inducible packaging system in suspension HEK293 cells from which we can also generate stable producer cell lines, in serum-free conditions. To evaluate the potential of this platform, we have generated a stable cell line that produces an LVV encoding a green fluorescent protein (GFP) and obtains 10E+07 to 10E+08 transduction units (TU)/mL at the 4 L, 10 L and 50 L scales. Functional LVV titers were maintained across all scales in bioreactors with different configurations and geometries indicating process robustness. Further, the addition of 10% feed increased the volumetric productivity by 3.5-fold in comparison to batch production, making our platform suitable for large-scale LVV production and showing a real potential for commercial manufacturing.
Biologics Production Cell & Gene Therapy Cell Lines Mammalian Cell Culture Manufacturing Regulatory Viral Reference Materials Viral Vectors
at-line analytics biolgics design space biologics cpp critical process parameters design-of-experiments doe fda guidance fmea in-line analytics ind investigational new drug mabs monoclonal antibodies on-line analytics pat process analytical technology real-time analytics regulatory considerations rta
The rapidly growing interest for cell and gene therapies demands the development of robust, scalable, and cost-effective bioprocesses for viral vector production. For the production of lentiviral vector (LVV) at high titers, we have developed an inducible packaging system in suspension HEK293 cells from which we can also generate stable producer cell lines, in serum-free conditions. To evaluate the potential of this platform, we have generated a stable cell line that produces an LVV encoding a green fluorescent protein (GFP) and obtains 10E+07 to 10E+08 transduction units (TU)/mL at the 4 L, 10 L and 50 L scales. Functional LVV titers were maintained across all scales in bioreactors with different configurations and geometries indicating process robustness. Further, the addition of 10% feed increased the volumetric productivity by 3.5-fold in comparison to batch production, making our platform suitable for large-scale LVV production and showing a real potential for commercial manufacturing.
The rapidly growing interest for cell and gene therapies demands the development of robust, scalable, and cost-effective bioprocesses for viral vector production. For the production of lentiviral vector (LVV) at high titers, we have developed an inducible packaging system in suspension HEK293 cells from which we can also generate stable producer cell lines, in serum-free conditions. To evaluate the potential of this platform, we have generated a stable cell line that produces an LVV encoding a green fluorescent protein (GFP) and obtains 10E+07 to 10E+08 transduction units (TU)/mL at the 4 L, 10 L and 50 L scales. Functional LVV titers were maintained across all scales in bioreactors with different configurations and geometries indicating process robustness. Further, the addition of 10% feed increased the volumetric productivity by 3.5-fold in comparison to batch production, making our platform suitable for large-scale LVV production and showing a real potential for commercial manufacturing.
The rapidly growing interest for cell and gene therapies demands the development of robust, scalable, and cost-effective bioprocesses for viral vector production. For the production of lentiviral vector (LVV) at high titers, we have developed an inducible packaging system in suspension HEK293 cells from which we can also generate stable producer cell lines, in serum-free conditions. To evaluate the potential of this platform, we have generated a stable cell line that produces an LVV encoding a green fluorescent protein (GFP) and obtains 10E+07 to 10E+08 transduction units (TU)/mL at the 4 L, 10 L and 50 L scales. Functional LVV titers were maintained across all scales in bioreactors with different configurations and geometries indicating process robustness. Further, the addition of 10% feed increased the volumetric productivity by 3.5-fold in comparison to batch production, making our platform suitable for large-scale LVV production and showing a real potential for commercial manufacturing.
The rapidly growing interest for cell and gene therapies demands the development of robust, scalable, and cost-effective bioprocesses for viral vector production. For the production of lentiviral vector (LVV) at high titers, we have developed an inducible packaging system in suspension HEK293 cells from which we can also generate stable producer cell lines, in serum-free conditions. To evaluate the potential of this platform, we have generated a stable cell line that produces an LVV encoding a green fluorescent protein (GFP) and obtains 10E+07 to 10E+08 transduction units (TU)/mL at the 4 L, 10 L and 50 L scales. Functional LVV titers were maintained across all scales in bioreactors with different configurations and geometries indicating process robustness. Further, the addition of 10% feed increased the volumetric productivity by 3.5-fold in comparison to batch production, making our platform suitable for large-scale LVV production and showing a real potential for commercial manufacturing.
The rapidly growing interest for cell and gene therapies demands the development of robust, scalable, and cost-effective bioprocesses for viral vector production. For the production of lentiviral vector (LVV) at high titers, we have developed an inducible packaging system in suspension HEK293 cells from which we can also generate stable producer cell lines, in serum-free conditions. To evaluate the potential of this platform, we have generated a stable cell line that produces an LVV encoding a green fluorescent protein (GFP) and obtains 10E+07 to 10E+08 transduction units (TU)/mL at the 4 L, 10 L and 50 L scales. Functional LVV titers were maintained across all scales in bioreactors with different configurations and geometries indicating process robustness. Further, the addition of 10% feed increased the volumetric productivity by 3.5-fold in comparison to batch production, making our platform suitable for large-scale LVV production and showing a real potential for commercial manufacturing.
The rapidly growing interest for cell and gene therapies demands the development of robust, scalable, and cost-effective bioprocesses for viral vector production. For the production of lentiviral vector (LVV) at high titers, we have developed an inducible packaging system in suspension HEK293 cells from which we can also generate stable producer cell lines, in serum-free conditions. To evaluate the potential of this platform, we have generated a stable cell line that produces an LVV encoding a green fluorescent protein (GFP) and obtains 10E+07 to 10E+08 transduction units (TU)/mL at the 4 L, 10 L and 50 L scales. Functional LVV titers were maintained across all scales in bioreactors with different configurations and geometries indicating process robustness. Further, the addition of 10% feed increased the volumetric productivity by 3.5-fold in comparison to batch production, making our platform suitable for large-scale LVV production and showing a real potential for commercial manufacturing.
The rapidly growing interest for cell and gene therapies demands the development of robust, scalable, and cost-effective bioprocesses for viral vector production. For the production of lentiviral vector (LVV) at high titers, we have developed an inducible packaging system in suspension HEK293 cells from which we can also generate stable producer cell lines, in serum-free conditions. To evaluate the potential of this platform, we have generated a stable cell line that produces an LVV encoding a green fluorescent protein (GFP) and obtains 10E+07 to 10E+08 transduction units (TU)/mL at the 4 L, 10 L and 50 L scales. Functional LVV titers were maintained across all scales in bioreactors with different configurations and geometries indicating process robustness. Further, the addition of 10% feed increased the volumetric productivity by 3.5-fold in comparison to batch production, making our platform suitable for large-scale LVV production and showing a real potential for commercial manufacturing.