
BioProcessing J O U R N A L

Fall 2007
ISSN 1538-8786

Vol. 6/No. 3 www.bioprocessingjournal.com

Trends and Developments in BioProcess Technology

A Publication of the
WilBio Institute for BioProcess Technology



BioProcessing Journal  •  Fall 200742

TECH REVIEW

E
lectrosprays and electros-
pinning are two interrelated 
physical phenomena which 
have been investigated for 
well over a century. Their 

similarity is based upon the primary 
driving mechanism; namely, the applied 
electric field. However, they have a fun-
damental difference that distinguishes 
one from the other: the former gen-
erates droplets while the latter forms 
continuous fibres.  These two processing 
routes have been extensively researched 
in many areas. 

Within the realm of life sciences, 
these routes have ranged from novel 
bioanalytical approaches (DNA and 
biomolecules) to tissue engineering by 
the formation of scaffolds, which mimic 
extracellular matrices. Only lately have 
these methods been explored for the 
direct process handling of living cells. 
Hence recently, developmental work has 
directly linked these techniques to a 
wide range of biomedical applications.

Introduction

Methods and protocols are the means 
by which all biomedically-based assess-
ments are carried out at a pre-clinical 
stage on biological matter (cells and 

subcellular-level components).1-3   One 
such gold standard is flow cytometry, 
a widely used fluorescence-activated 
cell-sorting (FACS) technique.4,5  Here, 
hydrodynamics and lasers are being used 
to make accurate and sensitive mea-
surements of the chemical and physical 
characteristics of living cells.  Cells are 
hydrodynamically sorted into a stream 
of labeled single cells which are sub-
sequently passed through an arrange-
ment of lasers that excite the cells. Their 
response is detected, and the resulting 
chemical and physical information of 
each cell is determined and categorised 
to be alive, necrotic, apoptotic, or simply 
cellular debris. 

Similarly, processing routes such as 
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Figure 1.  Digital images depicting: A) a single needle bio-electrospray device; B) the coaxial or concentric needle setup explored for both stable 
bio-electrospraying and cell electrospinning; and C) the bio-electrospray and cell electrospinning equipment arrangement setup in a class II 
safety cabinet, as explored in investigations.
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soft lithography6 and inkjet printing7 

are currently being explored for a range 
of applications within the life sciences. 
Soft lithography is a process where a 
stamp having the desired architecture 
(such as a protrusion) is used in form-
ing an impression on a planar surface. 
Subsequently, this impression is explored 
for encouraging the citing of several 
materials spanning from structural and 
functional to biological.  Structures 
in the nanometer range (<50 nm),
from functional nanoparticulates 
to biomolecules, have been assem-
bled and studied for promoting the 
 migration to proliferation of cells 
forming  cellular arrays and active cell 
patterns.8-10  Recently, this technique 
has even been explored for assessing 
subcellular  structures.11  

The inkjet printing technique has 
been scientifically “retrofitted” to dem-
onstrate an ability to propel a mea-
sured quantity of liquid containing liv-
ing cells for precision deposition on 
a wide range of substrates, and also 
fabricate viable biological constructs in 
multiple and pre-organised architec-
tural  dimension.12-14 

In an advanced patterning technique 
such as soft lithography, an additional 
processing stage is involved for forming 
these cellular arrays, since the process 
does not handle cells directly.  However, 
the inkjet process can form the desired 
cellular pattern directly, removing one 
stage of the processing protocol.  Having 
said that, the inkjet needles limit the 
number of cells per ml and form active 
cellular arrays in the several tens of  
micrometers.15,16  When jetted with 
needles sized in the 30-60 µm range, 
exceeding a limit of ~106 cells/ml has 
been known to promote an increase in 
cell mortality due to shearing. The cel-
lular concentration in suspension can 
be raised by increasing the needle bore 
diameter, resulting in larger cell-bearing 
deposits and coarser structures. 

Therefore, scientists are developing 
new jetting protocols which will have the 
best of both worlds.  To a great extent, 
bio-electrosprays (BES) and cell electro-
spinning (CE) have removed many of 
the most intriguing obstacles previously 
encountered.  In this review, we will 
present a technical overview of electro-

sprays and electrospinning, which forms 
the platform on which bio-electrosprays 
and cell electrospinning are based, along 
with their status to-date.  Finally, we will 
discuss applications where these electri-
fied bio-jets/threads can be explored 
within the biomedical sciences, extend-
ing to an outline of future challenges. 

A Brief History of Electrosprays 
and Electrospinning

Reportedly, electrosprays evolved 
from the observations made by English 
scientist and physician William Gilbert 
in the 1600s.  Gilbert’s electrostatic 
observations disseminated through his 
famous book, De Magnete17 reporting 
on how a droplet elongates, form-
ing a cone between a piece of amber 
and another surface while attached to 
both surfaces. Subsequently, studies 
into the behaviour of liquids flowing 
through conducting capillaries demon-
strated great potential with respect to a 
grounded element. Lord Rayleigh18,19 
investigated this phenomenon and 
reported on the behaviour of these jets 
and their breakup. He observed that 
surface tension played a pivotal role, 
helping to form the basis for the con-
cept of jet instability, known as the 
“Rayleigh’s instabilities.”  In the early 
1900s, Zeleny20-22 described these jets 
and their behaviour on a wide range of 
liquids. In 1964, Taylor,23 unlike Lord 
Rayleigh and Zeleny, focused his atten-
tion on the stability of these jets to the 
continuity, which stemmed from the 
stable formation of a liquid cone, cusp-
to-jet. 

This helped launch the mode of jet-
ting widely referred to as the “Taylor 
cone” or the “cone-jet.”  Several other 
scientists around the world have investi-
gated these electrified jets and the gen-
eration of droplets mathematically.24-28  
The analytical models have been of great 
use to the aerosol science community, 
and those interested in the processing 
of single-phase, low viscosity media.  
However, it has only been in the last 
decade or so that these jets have been 
implemented in the physical and life sci-
ences (in particular, to those scenarios 
which involve suspensions).

Closely related to electrosprays, elec-

trospinning dates back to the first pat-
ents filed by both Cooley and Morton 
in 1902.29,30 Several follow-on patents 
and scientific papers have been pub-
lished in this area of research31-35 but 
the process was primarily explored for 
textile applications. Now, unique elec-
trospinning developments can produce 
fibres that are hollow, fibrous, porous, 
aligned structures, and  fibers contain-
ing nanomaterials. Many have been 
heavily explored as tissue engineer-
ing materials.36-41  Most mathematical 
electrospray and electrospinning models 
are for processing single-phase media.  

Unlike inkjet printing, electrosprays 
and electrospinning are capable of 
 handling high viscosity liquids, multi-
phase in nature (containing either 
micro/nano materials in suspension at 
concentrations >40% in weight, hav-
ing viscosities >>1,000 mPa seconds) 
through needles with bores sized in 
the several hundreds of micrometers.  
Notably, the resulting droplets/continu-
ous threads, with their respective resi-
dues, are in the few micrometers, if not 
in the nanometers (<50 nm), which are 
generated with ease.42-45 Having seen 
the enormous implications for both 
electrosprays and electrospinning and 
what they can offer to applications in 
the real world, the recent discoveries of 
BES and CE are truly groundbreaking.

Electrosprays: 
Intricacies and Applications

This is a jetting-to-droplet gen-
eration methodology driven by high 
intensity electric fields.  Conducting 
capillary (usually stainless steel) set-
ups in single or coaxial/concentric 
configurations are connected to a 
high voltage power supply and held 
above a grounded electrode (Figures 
1A and 1B). Individual capillaries have 
an input of media via connected, preci-
sion syringe pumps (Figure 1C). The 
grounded electrode placed below the 
needle exit(s) could take the geometric 
variations from a ring, plate-to-point 
(Figure 2). The potential difference 
between the conducting needle and the 
grounded electrode forms an electric 
field.  Subsequently, the charged media 
exiting the conducting needle enters this 
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Figure 3.  Schematics illustrating sta-
ble electrospinning in: A) a single; and 
B) multiple fibre configurations.

Figure 2.  Schematic representations of: A) stable jet-
ting with a ring-shaped ground electrode, exhibiting 
droplet recirculation; B) jetting in the cone-jet mode 
for a plate configuration; and C) stable cone-jetting 
with a point ground electrode which has focused a 
majority of droplets to the curvature of the pointed 
end of the electrode.
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external electrical field, which subjects 
a combination of forces and stresses on 
the media droplet in three-dimension.  
Upon entering the electrical field, the 
liquid is accelerated towards the ground 
electrode, promoting the formation of 
a jet, and undergoes a combination of 
surface tension effects and Rayleigh’s 
instabilities, fragmenting the jet into 
individually-charged droplets. 

The geometries of these ground elec-
trodes play an important role in deter-
mining the shape of the plume-con-
taining droplets (Figure 2).  The ring 
and plate demonstrates the divergence 
of droplets.  The ring and plate directs 
large droplets to the centre while finer 
droplets have been found to recirculate 
on the ring’s extremities.  The point-
shaped ground electrode—unlike both 
the ring and plate—converge a majority 
of droplets to the point of this electrode.  
With the aid of these ground electrode 
geometries, the plume profiles can be 
altered, which is a very important detail 
in specific applications.

Electrosprays are also governed by the 
applied voltage, the flow rate of media to 
the needle, and its consistency to the 
media properties: viscosity, electrical 
conductivity, surface tension, density, 
and relative permittivity.  For a range of 
permutations and parameter combina-
tions (including the setup itself), the jet-
ting liquid has been observed to present 
many morphologies, which are referred 
to as modes of electrosprays.46-50  There 
are several jetting modes already well-
described in available literature, includ-
ing: a) cone-jet; b) spindle; c) rim-emis-
sion; and d) multi-jet; to name a few.  
Controllability through stabilisation 
and continuity in the jet produces near 
one-sized droplets and residues for the 
precision drop and placement of these 
droplets (if studied with the point elec-
trode).  Cone-jet mode has proven to be 
the most desirable.

Several scaling laws have been derived 
from the investigations of various scien-
tists worldwide, studying the continuity 
and stability of these jets for single-phase 
liquids.  One such law48 states that the 
hydrodynamic time must be greater than 
the electrical relaxation time in order for 
the liquid to accelerate between the elec-
trodes and form a continuous jet; sub-

sequently undergoing instabilities and 
giving rise to the generation of droplets 
and relics.  The mathematical modeling 
of these vivid jets extends to characteris-
ing these “jet break-up systems” categor-
ically into distinct mechanisms.49  By 
combining these models together with 
the properties of the processed, single-
phase liquid mediums, and moving on 
through dimensional analysis, equations 
have been derived for estimating droplet 
sizes.50  Because these equations-to-
scaling laws have been well-assessed and 
explored while processing single-phase 
media, they have been most useful as an 
approximation tool in experimentation.

In 2002, the Chemistry Nobel 
Committee recognised the pioneering 
efforts of Fenn et al. for their discovery of 
combining electrospray ionisation (ESI) 
with mass spectrometry (MS), widely 
referred to as ESI/MS.51,52 Originally 
employed for biomolecular recognition, 
it is now widely used in advanced cancer 
research.53  

Electrospray process applications 
have spanned many sciences such as: a) 
advanced routes in aerosols; b) agricul-
ture; c) chemical; d) micro/nanoencap-
sulation; e) drug delivery; f) coating and 
surface patterning; and g) the fabrication 
of fibres and three-dimensional struc-
tures having unique  complexities.54-76  

Electrospinning: 
Operation and Applications

Electrospinning and electrosprays 
share the same driving mechanism, but 
have fundamental differences.  In both 
protocols, a stable cone is formed through 
similar parameters, but with electrospin-
ning, the ensuing jet does not undergo 
break-up-forming droplets.  Instead, it 
undergoes a viscoelastic (or stretching) 
process which forms a uniaxial, continu-
ous thread.  Rheological properties play 
a major role by causing the jet to elon-
gate into a thread rather than fragment-
ing.  As with electrosprays, electrospin-
ning has been modeled for analysing its 
behaviour while processing single-phase 
liquids.77,78  While one might expect 
that electrospinning is limited to only 
one mode, it has been observed form-
ing multiple threads from an emerging 
single thread (Figure 3).79,80 

Electrospinning has been exploited 
in a wide range of research endeavours 
where nanothreads have been used in 
forming mats very easily, in a wide range 
of geometries and sizes down to the 
meter range.81-85  Electrospun struc-
tural and functional materials have been 
explored for use in: a) filtration; b) bio-
logical scaffolding; c) controlled drug 
delivery; and d) textile materials.86-91

A Research Milestone: 
Directly Processing Living Cells

The ability to directly explore electro-
sprays and electrospinning for process-
ing living cells has been demonstrated 
only recently.92-95  Initially, unstable jet-
ting conditions (particularly with BES) 
formed polydispersed droplets and resi-
dues.92,93  Variable cellular suspension 
properties such as electrical conductivity 
and viscosity hampered jet continuity 
and stability.  

It was decided that the protocol itself 
would require further development 
because the suspension media’s high 
conductivity was crucial to maintaining 
cell viability. Therefore, the BES needle 
was modified into a coaxial (or con-
centric) arrangement to create a stable 
jetting mode with the added feature of 
generating a near mono distribution of 
cell-bearing droplets and residues.96,97   
Medical grade polydimethylsilox-
ane (PDMS) medium, with a viscosity 
of ~1,000 mPa and a conductivity of 
~10-15 S/m, was used to encapsulate the 
charged, high conductivity/low viscosity 
cellular suspension as it entered the exter-
nal electric field.  During jetting in the 
stable mode, a highly concentrated (107 
cells/ml) cellular suspension was success-
fully processed by BES.96,97  

After increasing the outer PDMS vis-
cosity to ~12,500 mPas for CE (with the 
same cell concentration of 107 cells/ml), 
continuous threads and scaffolds/mem-
branes were formed containing living 
cells (Figure 4).94,95  

Exploring the Future: Biomedical 
Applications for Bio-Electrosprays 
and Cell Electrospinning

Tissue Engineering and Regeneration
This is becoming a highly explored 
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area of research due to the increas-
ing demand for fully-functional tissue 
and organs for repair and replacement.  
BES and CE protocols could be coupled 
with a plotting device to fabricate a 
variety of structured architectures in 
three-dimension using a range of pri-
mary cells.  These protocols, coupled 
with stem cells, have the possibility for 
directly fabricating in vivo unspecialised 
biological components (depicted in 
Figure 5).  In the future, such regener-
ated tissues—to possibly even organs—
could be used for the discovery of new 
drugs to therapeutics.

Therapeutic Medicine
For use in a controlled delivery situ-

ation or for engineered therapeutics 
through living cells, appropriate meth-
odology will be addressed by the dis-
covery of encapsulating polymers to 
act as selected molecular barriers.  The 
required nutrients surrounding the 
encapsulated cells will be allowed to 

cross the polymeric barrier while oth-
ers will be restricted.  Cell waste will 
pass through this polymeric shell while 
this polymeric system keeps the cells 
healthy until required, at which time the 
polymer will degrade and the healthy 
cells will be delivered for therapeutic 
 purposes.  

Developmental work has already 
demonstrated100 that, when subjected 
to these protocols, green florescent pro-
tein (GFP)-transfected neonatal cardiac 
myocytes expressed GFP post-treat-
ment.  This opens up another method of 
therapeutics where the processing cells 
will undergo gene therapy and be used 

Figure 5.  A representative schematic illustration of a three-dimensional bio-microfabrication system.  The development of such a bio-protocol 
could potentially create non-specialized tissues in conjunction with stem cells.

Figure 4. A) Characteristic optical image of a cell-bearing scaffold fabricated by means of 
coaxial or concentric needle cell electrospinning; and B) a schematic representation of the 
fabricating process for pre-organised scaffolds (aligned compound or composite threads/scaf-
folds-to-membranes).
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later for forming tissue.  These tissues 
might be implanted to mechanically 
engineer a wide range of pathologies 
through the coupling of gene therapy 
with these protocols.  Explorations with 
such encapsulation-containing cells are 
showing great implications ranging from 
cancer therapy and hormone treatment 
to the control of diabetes (depicted in 
Figure 6).101-103

Developmental Biology
Coupling these techniques with a 

plotting device (depicted in Figure 7), 
several living cells, from mammalian to 

yeast, could be deposited with precision 
to study their developmental-to-evolu-
tionary cycles.  The deposition of cells 
at a preset distance apart could help 
researchers investigate cell-to-cell inter-
actions, an interesting neurobiological/
tissue engineering study to explore pro-
tocols for constructing tissues-to-neural 
networks, by having millions of cells in 
close proximity.  

Conclusion

To date, research experiments have 
demonstrated the ability to produce 

live, cell-bearing droplets and threads 
without compromising viability. BES 
and CE will undergo continued devel-
opment with the strong possibility of 
implementation within the life sciences 
industry.  Several immortalised and pri-
mary cell types have been explored; the 
majority of which have been found via-
ble post-jetting, continuing to undergo 
all expected cellular processes.99 The 
post-treated cells from both BES and CE 
have always been compared with con-
trols (those cells that are passed through 
the protocol without the application 
of an applied voltage) to those culture 

Figure 7.  Representative viability data on cell electrospinning with highly concentrated cellular suspensions (107 cells/ml) containing: A) porcine 
aortic cells; and B) rabbit vascular smooth muscle cells.  (Please note: The prefixes P and R represent porcine and rabbit cells, while C and CE 
stand for control and cell electrospun.  R5, R4, R3 and R2 represent necrotic [dead], alive, and apoptotic [programmed cell death] cells to those 
cellular debris respectively, as analysed by flow cytometry.)

Figure 6.  A characteristic: A) optical; and B) florescent image depicting encapsulated GFP-expressing cells generated by way of bio-electro-
spraying an alginate-cell suspension system. 
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controls (untreated cells).  These bio-
medical protocols explored for assess-
ing viability of post-jetted and threaded 
cells have matured from trypan blue 
staining to flow cytometry analysis. The 
latter being a biomedical gold standard, 
it demonstrated the large population 
of cells viable from either protocol 
(Figures 7 and 8).  

Developmental work is now in pur-
suit of discovering the effects these pro-
tocols may have at the internal and 
external subcellular level.  It is well 
known that damaged subcellular com-
ponents can cause changes which nega-
tively affect fabricated tissues.  Research 

is now ongoing to study the post-treated 
cells at the DNA level for stresses to 
components such as chromosomes and 
nuclei. 

Initial studies with BES and CE 
explored γ histone 2AX labeling and 
Western blotting, which showed that 
the post-processed cells (in this study, 
primary neonatal cardiac myocytes100) 
failed to exhibit any incurred cell 
stresses and demonstrated no dam-
age to cell DNA.  Vigorous studies are 
taking place with gene expression and 
karyotyping on the post-treated cells 
(in comparison to controls) for assess-
ing effects on these components as a 

function of time.  Once these inves-
tigations have successfully concluded, 
studies on the many applications these 
jets and threads have for the biomedical 
sciences will  commence. 
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A s more biopharmaceutical products enter clinical   
  trials and commercial production, it is becoming 
ever more challenging to guarantee the supply of critical raw 
materials and disposable process components. The sheer 
volume of some raw materials is testing the limits of many 
suppliers, while more applications move toward the use of 
prepared and pre-sterilized materials. Concurrently, quality 
control expectations are expanding to keep pace with the 
availability of increasingly powerful analytical techniques.

As a response to these trends, reliable vendors must be 
identifi ed, evaluated, and then worked with closely to make 
sure they understand and are able to satisfy the volume, 
quality, documentation, and communication requirements of 
this rapidly growing industry.
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