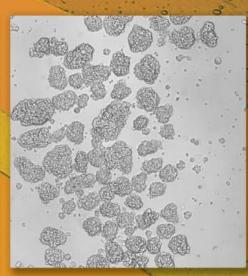
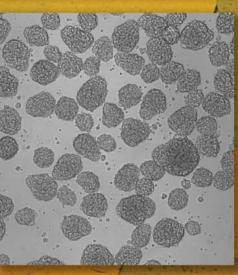
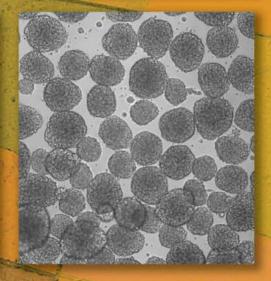
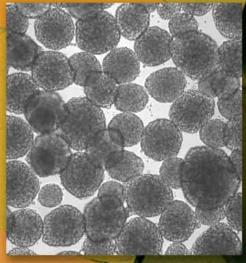

A Publication of the WilBio Institute for BioProcess Technology


Fall 2007 ISSN 1538-8786


BIOPTOCESSINS JOURNAL


Trends and Developments in BioProcess Technology



Bio-Electrosprays and Cell Electrospinning: Rapidly Emerging Physical Protocols for Potential Life Science Applications

By SUWAN N. JAYASINGHE

lectrosprays and electrospinning are two interrelated physical phenomena which have been investigated for well over a century. Their similarity is based upon the primary driving mechanism; namely, the applied electric field. However, they have a fundamental difference that distinguishes one from the other: the former generates droplets while the latter forms continuous fibres. These two processing routes have been extensively researched in many areas.

Within the realm of life sciences, these routes have ranged from novel bioanalytical approaches (DNA and biomolecules) to tissue engineering by the formation of scaffolds, which mimic extracellular matrices. Only lately have these methods been explored for the direct process handling of living cells. Hence recently, developmental work has directly linked these techniques to a wide range of biomedical applications.

Introduction

Methods and protocols are the means by which all biomedically-based assessments are carried out at a pre-clinical stage on biological matter (cells and subcellular-level components).¹⁻³ One such gold standard is flow cytometry, a widely used fluorescence-activated cell-sorting (FACS) technique.^{4,5} Here, hydrodynamics and lasers are being used to make accurate and sensitive measurements of the chemical and physical characteristics of living cells. Cells are hydrodynamically sorted into a stream of labeled single cells which are subsequently passed through an arrangement of lasers that excite the cells. Their response is detected, and the resulting chemical and physical information of each cell is determined and categorised to be alive, necrotic, apoptotic, or simply cellular debris.

Similarly, processing routes such as

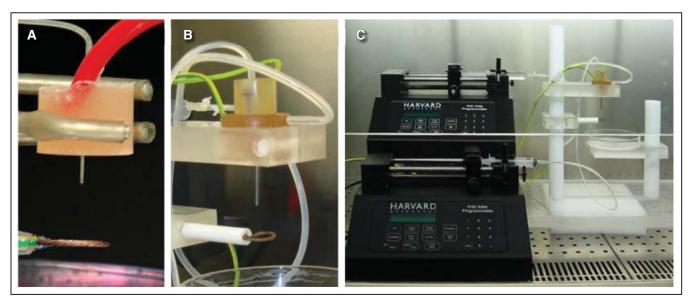


Figure 1. Digital images depicting: A) a single needle bio-electrospray device; B) the coaxial or concentric needle setup explored for both stable bio-electrospraying and cell electrospinning; and C) the bio-electrospray and cell electrospinning equipment arrangement setup in a class II safety cabinet, as explored in investigations.

Suwan N. Jayasinghe, Ph.D. (s.jayasinghe@ucl.ac.uk), Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom; Telephone: 0044 (0)2076792960, Fax: 0044 (0)2073880180.

soft lithography⁶ and inkjet printing⁷ are currently being explored for a range of applications within the life sciences. Soft lithography is a process where a stamp having the desired architecture (such as a protrusion) is used in forming an impression on a planar surface. Subsequently, this impression is explored for encouraging the citing of several materials spanning from structural and functional to biological. Structures in the nanometer range (<50 nm), from functional nanoparticulates to biomolecules, have been assembled and studied for promoting the migration to proliferation of cells forming cellular arrays and active cell patterns.⁸⁻¹⁰ Recently, this technique has even been explored for assessing subcellular structures.¹¹

The inkjet printing technique has been scientifically "retrofitted" to demonstrate an ability to propel a measured quantity of liquid containing living cells for precision deposition on a wide range of substrates, and also fabricate viable biological constructs in multiple and pre-organised architectural dimension. 12-14

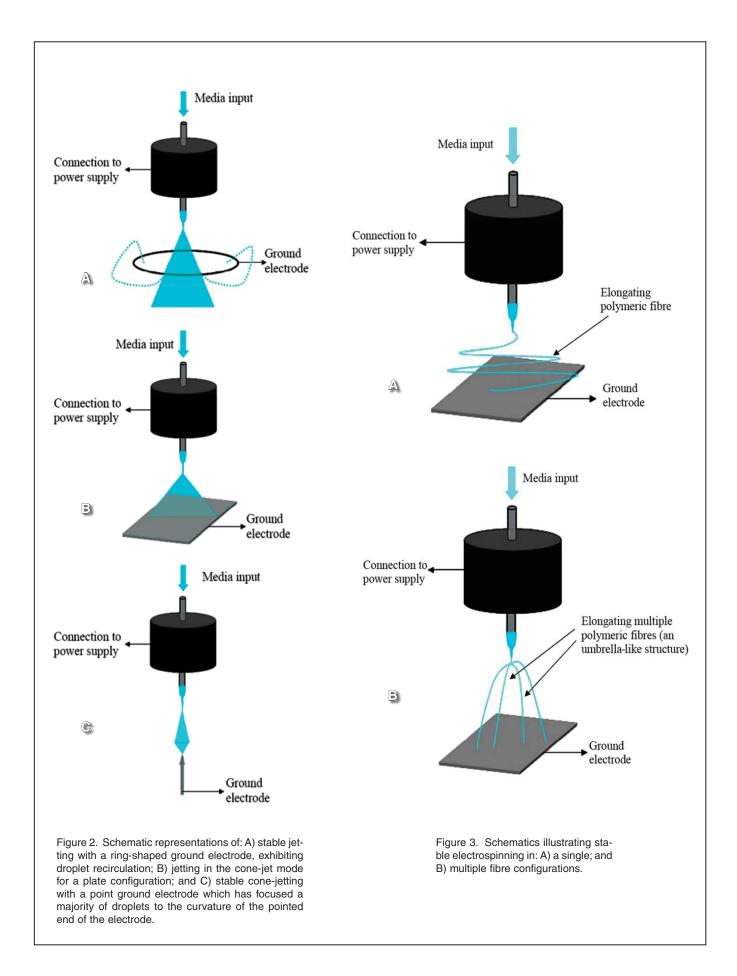
In an advanced patterning technique such as soft lithography, an additional processing stage is involved for forming these cellular arrays, since the process does not handle cells directly. However, the inkjet process can form the desired cellular pattern directly, removing one stage of the processing protocol. Having said that, the inkjet needles limit the number of cells per ml and form active cellular arrays in the several tens of micrometers.^{15,16} When jetted with needles sized in the 30-60 µm range, exceeding a limit of ~106 cells/ml has been known to promote an increase in cell mortality due to shearing. The cellular concentration in suspension can be raised by increasing the needle bore diameter, resulting in larger cell-bearing deposits and coarser structures.

Therefore, scientists are developing new jetting protocols which will have the best of both worlds. To a great extent, bio-electrosprays (BES) and cell electrospinning (CE) have removed many of the most intriguing obstacles previously encountered. In this review, we will present a technical overview of electrosprays and electrospinning, which forms the platform on which bio-electrosprays and cell electrospinning are based, along with their status to-date. Finally, we will discuss applications where these electrified bio-jets/threads can be explored within the biomedical sciences, extending to an outline of future challenges.

A Brief History of Electrosprays and Electrospinning

Reportedly, electrosprays evolved from the observations made by English scientist and physician William Gilbert in the 1600s. Gilbert's electrostatic observations disseminated through his famous book, De Magnete¹⁷ reporting on how a droplet elongates, forming a cone between a piece of amber and another surface while attached to both surfaces. Subsequently, studies into the behaviour of liquids flowing through conducting capillaries demonstrated great potential with respect to a grounded element. Lord Rayleigh^{18,19} investigated this phenomenon and reported on the behaviour of these jets and their breakup. He observed that surface tension played a pivotal role, helping to form the basis for the concept of jet instability, known as the "Rayleigh's instabilities." In the early 1900s, Zeleny²⁰⁻²² described these jets and their behaviour on a wide range of liquids. In 1964, Taylor,²³ unlike Lord Rayleigh and Zeleny, focused his attention on the stability of these jets to the continuity, which stemmed from the stable formation of a liquid cone, cuspto-jet.

This helped launch the mode of jetting widely referred to as the "Taylor cone" or the "cone-jet." Several other scientists around the world have investigated these electrified jets and the generation of droplets mathematically. 24-28 The analytical models have been of great use to the aerosol science community, and those interested in the processing of single-phase, low viscosity media. However, it has only been in the last decade or so that these jets have been implemented in the physical and life sciences (in particular, to those scenarios which involve suspensions).


Closely related to electrosprays, elec-

trospinning dates back to the first patents filed by both Cooley and Morton in 1902.^{29,30} Several follow-on patents and scientific papers have been published in this area of research³¹⁻³⁵ but the process was primarily explored for textile applications. Now, unique electrospinning developments can produce fibres that are hollow, fibrous, porous, aligned structures, and fibers containing nanomaterials. Many have been heavily explored as tissue engineering materials.³⁶⁻⁴¹ Most mathematical electrospray and electrospinning models are for processing single-phase media.

Unlike inkjet printing, electrosprays and electrospinning are capable of handling high viscosity liquids, multiphase in nature (containing either micro/nano materials in suspension at concentrations >40% in weight, having viscosities >>1,000 mPa seconds) through needles with bores sized in the several hundreds of micrometers. Notably, the resulting droplets/continuous threads, with their respective residues, are in the few micrometers, if not in the nanometers (<50 nm), which are generated with ease.42-45 Having seen the enormous implications for both electrosprays and electrospinning and what they can offer to applications in the real world, the recent discoveries of BES and CE are truly groundbreaking.

Electrosprays: Intricacies and Applications

This is a jetting-to-droplet generation methodology driven by high intensity electric fields. Conducting capillary (usually stainless steel) setups in single or coaxial/concentric configurations are connected to a high voltage power supply and held above a grounded electrode (Figures 1A and 1B). Individual capillaries have an input of media via connected, precision syringe pumps (Figure 1C). The grounded electrode placed below the needle exit(s) could take the geometric variations from a ring, plate-to-point (Figure 2). The potential difference between the conducting needle and the grounded electrode forms an electric field. Subsequently, the charged media exiting the conducting needle enters this

external electrical field, which subjects a combination of forces and stresses on the media droplet in three-dimension. Upon entering the electrical field, the liquid is accelerated towards the ground electrode, promoting the formation of a jet, and undergoes a combination of surface tension effects and Rayleigh's instabilities, fragmenting the jet into individually-charged droplets.

The geometries of these ground electrodes play an important role in determining the shape of the plume-containing droplets (Figure 2). The ring and plate demonstrates the divergence of droplets. The ring and plate directs large droplets to the centre while finer droplets have been found to recirculate on the ring's extremities. The pointshaped ground electrode—unlike both the ring and plate—converge a majority of droplets to the point of this electrode. With the aid of these ground electrode geometries, the plume profiles can be altered, which is a very important detail in specific applications.

Electrosprays are also governed by the applied voltage, the flow rate of media to the needle, and its consistency to the media properties: viscosity, electrical conductivity, surface tension, density, and relative permittivity. For a range of permutations and parameter combinations (including the setup itself), the jetting liquid has been observed to present many morphologies, which are referred to as modes of electrosprays. 46-50 There are several jetting modes already welldescribed in available literature, including: a) cone-jet; b) spindle; c) rim-emission; and d) multi-jet; to name a few. Controllability through stabilisation and continuity in the jet produces near one-sized droplets and residues for the precision drop and placement of these droplets (if studied with the point electrode). Cone-jet mode has proven to be the most desirable.

Several scaling laws have been derived from the investigations of various scientists worldwide, studying the continuity and stability of these jets for single-phase liquids. One such law⁴⁸ states that the hydrodynamic time must be greater than the electrical relaxation time in order for the liquid to accelerate between the electrodes and form a continuous jet; sub-

sequently undergoing instabilities and giving rise to the generation of droplets and relics. The mathematical modeling of these vivid jets extends to characterising these "jet break-up systems" categorically into distinct mechanisms.⁴⁹ By combining these models together with the properties of the processed, singlephase liquid mediums, and moving on through dimensional analysis, equations have been derived for estimating droplet sizes.⁵⁰ Because these equations-toscaling laws have been well-assessed and explored while processing single-phase media, they have been most useful as an approximation tool in experimentation.

In 2002, the Chemistry Nobel Committee recognised the pioneering efforts of Fenn *et al.* for their discovery of combining electrospray ionisation (ESI) with mass spectrometry (MS), widely referred to as ESI/MS.^{51,52} Originally employed for biomolecular recognition, it is now widely used in advanced cancer research.⁵³

Electrospray process applications have spanned many sciences such as: a) advanced routes in aerosols; b) agriculture; c) chemical; d) micro/nanoencapsulation; e) drug delivery; f) coating and surface patterning; and g) the fabrication of fibres and three-dimensional structures having unique complexities.⁵⁴⁻⁷⁶

Electrospinning: Operation and Applications

Electrospinning and electrosprays share the same driving mechanism, but have fundamental differences. In both protocols, a stable cone is formed through similar parameters, but with electrospinning, the ensuing jet does not undergo break-up-forming droplets. Instead, it undergoes a viscoelastic (or stretching) process which forms a uniaxial, continuous thread. Rheological properties play a major role by causing the jet to elongate into a thread rather than fragmenting. As with electrosprays, electrospinning has been modeled for analysing its behaviour while processing single-phase liquids.^{77,78} While one might expect that electrospinning is limited to only one mode, it has been observed forming multiple threads from an emerging single thread (Figure 3).^{79,80}

Electrospinning has been exploited in a wide range of research endeavours where nanothreads have been used in forming mats very easily, in a wide range of geometries and sizes down to the meter range.⁸¹⁻⁸⁵ Electrospun structural and functional materials have been explored for use in: a) filtration; b) biological scaffolding; c) controlled drug delivery; and d) textile materials.⁸⁶⁻⁹¹

A Research Milestone: Directly Processing Living Cells

The ability to directly explore electrosprays and electrospinning for processing living cells has been demonstrated only recently. 92-95 Initially, unstable jetting conditions (particularly with BES) formed polydispersed droplets and residues. 92,93 Variable cellular suspension properties such as electrical conductivity and viscosity hampered jet continuity and stability.

It was decided that the protocol itself would require further development because the suspension media's high conductivity was crucial to maintaining cell viability. Therefore, the BES needle was modified into a coaxial (or concentric) arrangement to create a stable jetting mode with the added feature of generating a near mono distribution of cell-bearing droplets and residues.^{96,97} grade polydimethylsilox-Medical ane (PDMS) medium, with a viscosity of ~1,000 mPa and a conductivity of $\sim 10^{-15}$ S/m, was used to encapsulate the charged, high conductivity/low viscosity cellular suspension as it entered the external electric field. During jetting in the stable mode, a highly concentrated (10⁷ cells/ml) cellular suspension was successfully processed by BES.96,97

After increasing the outer PDMS viscosity to ~12,500 mPas for CE (with the same cell concentration of 10⁷ cells/ml), continuous threads and scaffolds/membranes were formed containing living cells (Figure 4).^{94,95}

Exploring the Future: Biomedical Applications for Bio-Electrosprays and Cell Electrospinning

Tissue Engineering and RegenerationThis is becoming a highly explored

area of research due to the increasing demand for fully-functional tissue and organs for repair and replacement. BES and CE protocols could be coupled with a plotting device to fabricate a variety of structured architectures in three-dimension using a range of primary cells. These protocols, coupled with stem cells, have the possibility for directly fabricating *in vivo* unspecialised biological components (depicted in Figure 5). In the future, such regenerated tissues—to possibly even organs—could be used for the discovery of new drugs to therapeutics.

Therapeutic Medicine

For use in a controlled delivery situation or for engineered therapeutics through living cells, appropriate methodology will be addressed by the discovery of encapsulating polymers to act as selected molecular barriers. The required nutrients surrounding the encapsulated cells will be allowed to

Figure 4. A) Characteristic optical image of a cell-bearing scaffold fabricated by means of coaxial or concentric needle cell electrospinning; and B) a schematic representation of the fabricating process for pre-organised scaffolds (aligned compound or composite threads/scaffolds-to-membranes).

cross the polymeric barrier while others will be restricted. Cell waste will pass through this polymeric shell while this polymeric system keeps the cells healthy until required, at which time the polymer will degrade and the healthy cells will be delivered for therapeutic purposes.

Developmental work has already demonstrated¹⁰⁰ that, when subjected to these protocols, green florescent protein (GFP)-transfected neonatal cardiac myocytes expressed GFP post-treatment. This opens up another method of therapeutics where the processing cells will undergo gene therapy and be used

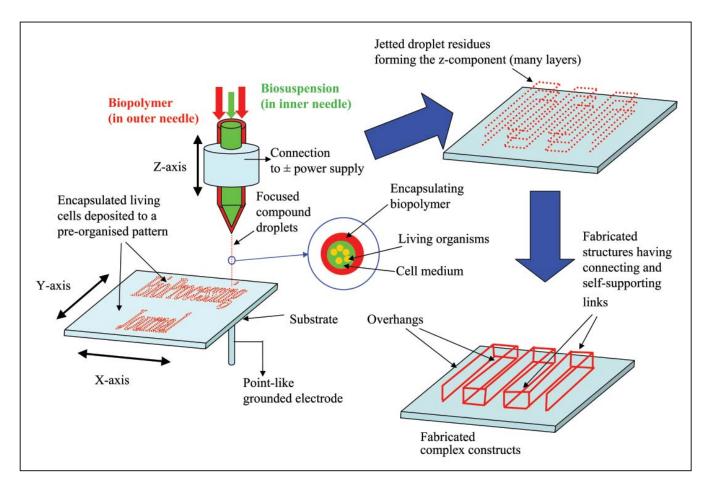


Figure 5. A representative schematic illustration of a three-dimensional bio-microfabrication system. The development of such a bio-protocol could potentially create non-specialized tissues in conjunction with stem cells.

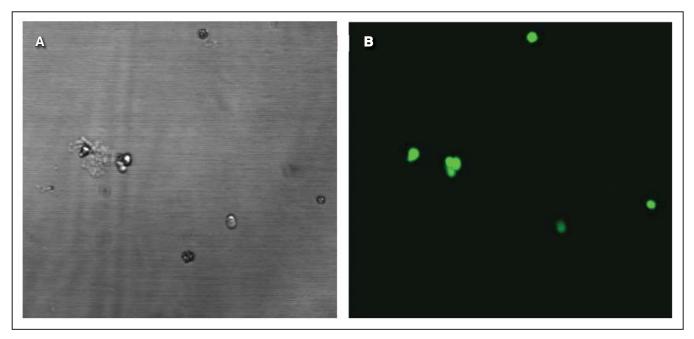


Figure 6. A characteristic: A) optical; and B) florescent image depicting encapsulated GFP-expressing cells generated by way of bio-electrospraying an alginate-cell suspension system.

later for forming tissue. These tissues might be implanted to mechanically engineer a wide range of pathologies through the coupling of gene therapy with these protocols. Explorations with such encapsulation-containing cells are showing great implications ranging from cancer therapy and hormone treatment to the control of diabetes (depicted in Figure 6). 101-103

Developmental Biology

Coupling these techniques with a plotting device (depicted in Figure 7), several living cells, from mammalian to

yeast, could be deposited with precision to study their developmental-to-evolutionary cycles. The deposition of cells at a preset distance apart could help researchers investigate cell-to-cell interactions, an interesting neurobiological/tissue engineering study to explore protocols for constructing tissues-to-neural networks, by having millions of cells in close proximity.

Conclusion

To date, research experiments have demonstrated the ability to produce live, cell-bearing droplets and threads without compromising viability. BES and CE will undergo continued development with the strong possibility of implementation within the life sciences industry. Several immortalised and primary cell types have been explored; the majority of which have been found viable post-jetting, continuing to undergo all expected cellular processes. The post-treated cells from both BES and CE have always been compared with controls (those cells that are passed through the protocol without the application of an applied voltage) to those culture

Figure 7. Representative viability data on cell electrospinning with highly concentrated cellular suspensions (10⁷ cells/ml) containing: A) porcine aortic cells; and B) rabbit vascular smooth muscle cells. (Please note: The prefixes P and R represent porcine and rabbit cells, while C and CE stand for control and cell electrospun. R5, R4, R3 and R2 represent necrotic [dead], alive, and apoptotic [programmed cell death] cells to those cellular debris respectively, as analysed by flow cytometry.)

Miami, Florida • February 4-6, 2008

REGISTER NOW AT www.wilbio.com!

The Williamsburg BioProcessing Foundation • P.O. Box 1229, Virginia Beach, Virginia 23451 Phone: 757.423.8823 • Fax: 757.423.2065 • Web: www.wilbio.com • E-mail: info@wilbio.com

controls (untreated cells). These biomedical protocols explored for assessing viability of post-jetted and threaded cells have matured from trypan blue staining to flow cytometry analysis. The latter being a biomedical gold standard, it demonstrated the large population of cells viable from either protocol (Figures 7 and 8).

Developmental work is now in pursuit of discovering the effects these protocols may have at the internal and external subcellular level. It is well known that damaged subcellular components can cause changes which negatively affect fabricated tissues. Research

is now ongoing to study the post-treated cells at the DNA level for stresses to components such as chromosomes and nuclei.

Initial studies with BES and CE explored γ histone 2AX labeling and Western blotting, which showed that the post-processed cells (in this study, primary neonatal cardiac myocytes 100) failed to exhibit any incurred cell stresses and demonstrated no damage to cell DNA. Vigorous studies are taking place with gene expression and karyotyping on the post-treated cells (in comparison to controls) for assessing effects on these components as a

function of time. Once these investigations have successfully concluded, studies on the many applications these jets and threads have for the biomedical sciences will commence.

ACKNOWLEDGMENTS

The author would like to take this opportunity to thank Mr. Adrian Walker (EPSRC, Engineering Equipment Loan Pool), Mr. Andy Smith (Sympatec Ltd, UK), and Mr. Jo Cleves (Photosonics International Ltd, UK), who have greatly helped in providing the required analytical instrumentation for the research carried out in our laboratories. The author gratefully acknowledges funding provided by both the Royal Society and the Engineering and Physical Sciences Research Council of the UK.

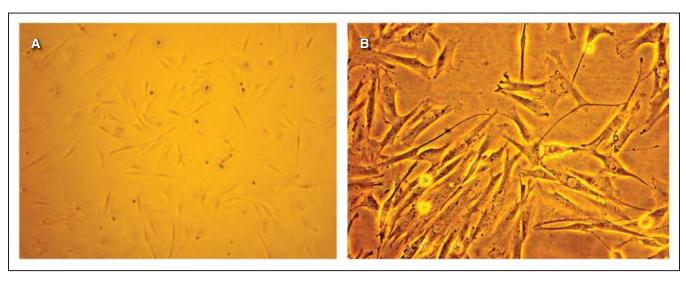


Figure 8. Characteristic optical micrographs: A) low magnification of post-spun cells; and B) high magnification of post-threaded cells; both after a period of three weeks.

REFERENCES

- 1. Corley RB. A Guide to Methods in the Biomedical Sciences, Springer, 1 edition 2004.
- 2. Jones GE. *Human Cell Culture Protocols*, Human Press, April 1996.
- 3. Morgan JR, Yarmush ML. *Tissue Engineering*, Human Press, September 1998.
- Robinson SP, Stagg AJ. Dendritic Cell Protocols, Human Press, 2001.
 Studzinski G. (Editor), Apoptosis: A Practical
- Approach, Oxford University Press, 2000.Xia Y, Whitesides GM. Soft Lithography, Angewandte
- 6. Xia Y, Whitesides GM. Soft Lithography, *Angewandte Chemie International Edition*, 1998; 37:550-557.
- 7. Perçin G, Khuri-Yakub BT. Micromachined droplet ejector arrays for controlled inkjet printing and deposition, *Rev Sci Instrum*, 2002; 73: 2193-2196.
- 8. Yap FL, Zhang Y. Protein and cell micropatterning and its integration with micro/nanoparticles assembly, *Biosensors and Bioelectronics*, 2007; 22; 775-788.
- 9. Falconnet D, Csucs G, Grandin HM, Textor M. Surface engineering approaches to micropattern sur-

- faces for cell-based assays, *Biomaterials*, 2006, 27, 3044-3063.
- 10. Ruiz A, Ceriotti L, Buzanska L, Hasiwa M, Bretagnol, F, Ceccone G, Gilliland G, Rauscher H, Coecke S, Colpo P, Rossi F. Controlled micropatterning of biomolecules for cell culturing, *Microelectronic Engineering*, 2007, 84, 1733-1736.
- 11. Kandere-Grzybowska K, Campbell CJ, Mahmud G, Komarova Y, Soh S, Grzybowski BA. Cell motility on micropatterned treadmills and tracks, *Soft Matter*, 2007, 6, 672-679.
- 12. Sanjana NE, Fuller SB. A fast flexible inkjet printing method for patterning dissociated neurons in culture, *J Neurosci Methods*, 2004, 30; 151-163.
- 13. Ringeisen BR, Othon CM, Barron JA, Young D, Spargo BJ. Jet-based methods to print living cells, *Biotechnol J*, 2006, 1, 930-948.
- 14. Boland T, Xu T, Damon B, Cui X. Application of inkjet printing to tissue engineering, *Biotechnol J*, 2006, 1, 910-917.

- 15. Turcu F, Tratsk-Nitz K, Thanos S, Schuhmann W, Heiduschka P. Inkjet printing for micropattern generation of laminin for neuronal adhesion, *Journal of Neurosci Methods*, 2003, 131, 141-148.
- Xu Y, Gregory CA, Molnar P, Cui X, Jalota S, Bhaduri SB, Boland T. Viability and electrophysiology of neural cell structures generated by the inkjet printing method, *Biomaterials*, 2006, 27, 3580-3588.
- 17. Gilbert W. De Magnete, Dover Publications, 1991.
- Rayleigh L. On the instability of a cylinder of viscous liquid under capillary force, *Philos Mag*, 1892, 34, 145-156.
- Rayleigh L. On the equilibrium of liquid conducting masses charged with electricity, *Philos Mag*, 1882, 14, 184-194
- 20. Zeleny J. The electrical discharge from liquid points and a hydrostatic method of measuring the electric intensity at their surface, *Phys Rev*, 1914, 3, 60, 01
- 21. Zeleny J. On the conditions of instability of electri-

- fied drops, with applications to the electric discharge from liquid points, Proceedings of the Cambridge Philosophical Society, 1915, 18, 71–83.
- 22. Zeleny J. Instability of electrified liquid surfaces. *Phys Rev*, 1917, 10, 1–16.
- 23. Taylor Gl. Disintegration of water droplets in an electric field. Proceedings of the Royal Society (London), 1964, 280, 383–397.
- 24. Weber C. Zum Zerfall eines Flussigkeitsstrahles, *Z Angew Math Mech*, 1931, 11, 136-143.
- 25. Melcher JR. Field-coupled Surface Waves. MIT Press, Cambridge, MA, 1963.
- 26. Ganan-Calvo A.M. The surface charge in electrospraying: Its nature and its universal scaling laws. *J Aerosol Sci.* 1999. 30. 863–872.
- 27. Higuera FJ. Current/flow-rate characteristic of an electrospray with a small meniscus, *J Fluid Mech*, 2004, 513: 239-246.
- 28. Hartman RPA, Borra J-P, Brunner DJ, Marijnissen, JCM, Scarlett B. The evolution of electrohydrodynamic sprays produced in the cone-jet mode, a physical model. *J Electrostat*, 1999, 47, 143–170.
- 29. Cooley JF, 1902 Apparatus for electrically dispersing fluids, US Patent Specification 692631.
- 30. Morton WJ, 1902 Method of dispersing fluids, US Patent Specification 705691.
- 31. Larrondo L, Manley RSJ. Electrostatic fiber spinning from polymer melts: I. Experimental observations on fiber formation and properties, *J Polym Sci*, 1981, 19, 909-921.
- 32. Larrondo L, Manley RSJ. Electrostatic fiber spinning from polymer melts: II. Examination of the flow field in an electrically driven jet, *J Polym Sci*, 1981, 19, 921-929.
- 33. Larrondo L, Manley RSJ. Electrostatic fiber spinning from polymer melts: III. Electrostatic deformation of a pendent drop of polymer melt, *J Polym Sci*, 1981, 19, 933-946.
- 34. Koombhongse S, Reneker DH. Bending instability in electrospinning of nanofibers, *J Appl Phys*, 2001, 89, 3018-3031.
- 35. Stitzel J, Liu J, Lee SJ, Komura M, Berry J, Soker S, Lim G, Dyke MV, Czerw R, Yoo JJ, Atala A, Controlled fabrication of a biological vascular substitute, *Biomater*. 2006. 27. 1088-1031.
- 36. Subramanian A, Vu D, Larsen GF, Lin HY. Preparation and evaluation of the electrospun chitosan/ PEO fibers for potential applications in cartilage tissue engineering, *J Biomater Sci Polym*, Edn 2005, 16, 861-921.
- 37. Dalton PD, Klinkhammer K, Salber J, Klee D, Moller, M. Direct *in vitro* electrospinning with polymer melts, *Biomacromolecules*, 2006, 7, 686-891.
- 38. Li D, Wang Y, Xia Y. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films, *Advanced Mater*, 2004, 16, 361-383.
- 39. Li D, Xia Y. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning, *Nano Lett*, 2004, 4, 933-961.
- 40. Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, Greiner A, Wendorff JH. Nanostructured fibers via electrospinning, *Advanced Mater*, 2001, 13, 70-72.
- Bhattarai N, Li Z, Edmondson D, Zhan M. Alginatebased nanofibrous scaffolds: structural, mechanical, and biological properties, *Advanced Mater*, 2006, 18, 1463-1467.
- 42. Jayasinghe SN, Edirisinghe MJ, Wang DZ.

- Controlled deposition of nanoparticle clusters by electrohydrodynamic atomization, *Nanotechnology*, 2004, 15, 1519-1523
- 43. Pozniak BP, Cole RB. Current measurements within the electrospray emitter, *J Amer Soc for Mass Spec*, 2007, 18, 737-748.
- 44. Michael Böttger PHM, Bi Z, Adolph D, Dick KA, Karlsson LS, Karlsson MNA, Wacaser BA, Deppert K. Electrospraying of colloidal nanoparticles for seeding of nanostructure growth, *Nanotech*, 2007, 18, 105304-105310.
- 45. Hartman RPA. Doctoral Thesis: Electrohydrodynamic atomization in the cone-jet mode: from physical modelling to powder production, 1998.
- 46. Cloupeau M, Prunet-Foch B. Electrohydrodynamic spraying functioning modes: a critical review, *J Aerosol Sci*, 1994, 25, 1021-1036.
- 47. Jaworek A, Krupa A. Classification of the modes of EHD spraying, *J Aerosol Sci*, 1999, 30, 873-893.
- 48. Ganan-Calvo AM, Davila J, Barrero A. Current and droplet size in the electrospraying of liquids. Scaling laws. *J Aerosol Sci*, 1997, 28, 249–275.
- Hartman RPA, Brunner DJ, Camelot DMA, Marijnissen JCM, Scarlett B. Electrohydrodynamic atomization in the cone-jet mode physical modelling of the liquid cone and jet, *J Aerosol Sci*, 1999, 30, 823-849.
- 50. Hartman RPA, Brunner DJ, Camelot DMA, Marijnissen JCM, Scarlett B. Jet break-up in electro-hydrodynamic atomization, *J Aerosol Sci*, 2000, 31, 65-95
- 51. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse, CM. Electrospray ionization for mass spectrometry of large biomolecules, *Science*, 1989, 246, 64-68.
- 52. Labowsky MJ, Whitehouse CM, Fenn JB. Threedimensional deconvolution of multiply charged spectra, *Rapid Comm in Mass Spec*, 1993, 7, 71-74.
- 53. Bergen HR, Vasmatzis G, Cliby WA, Johnson KL, Oberg AL, Muddiman DC. Discovery of ovarian cancer biomarkers in serum using nanoLC electrospray ionization TOF and FT-ICR mass spectrometry, *Dis Markers*, 2003, 19, 239-249.
- 54. Martínez-Lozano P, Labowsky M, Fernández de la Mora J. Experimental tests of a nano-DMA with no voltage change between aerosol inlet and outlet slits, *J Aerosol Sci*, 2006, 37, 1629-1642.
- 55. Chen D-R, Pui DYH, Kaufman SL. Electrospraying of conducting liquids for monodisperse aerosol generation in the 4 nm to 1.8 μm diameter range, *J Aerosol Sci*, 1995, 26, 963-977.
- 56. Tang K, Gomez A. Generation by electrospray of monodisperse water droplets for targeted drug delivery by inhalation, *J Aerosol Sci*, 1994, 25, 1237-1249.
- 57. Ragucci R, Fabiani F, Cavaliere A. Muscetta P, Noviello C. Characterization of stability regimes of electrohydrodynamically enhanced atomization, *Experi Therm Fluid Sci.* 2000, 21, 156-161.
- 58. Jansson C, Pihlstrom T, Osterdahl B-G, Markides KE. A new multi-residue method for analysis of pesticide residues in fruit and vegetables using liquid chromatography with tandem mass spectrometric detection, *J Chromatog A*, 2004, 1023, 93-104.
- 59. Bocanegra R, Gaonkar AG, Barrero A, Loscertales IG, Pechack D, Marquez M. Production of cocoa butter microcapsules using an electrospray process, *J Food Sci*, 2005, 70, e492–e497.
- 60. Ude S, de la Mora JF. Molecular monodisperse mobility and mass standards from electrosprays of

- tetra-alkyl ammonium halides, *J Aerosol Sci*, 2005, 36, 1224-1237
- 61. Park SH, Lee KW, Shimada M, Okuyama K. Coagulation of bipolarly charged ultrafine aerosol particles, *J Aerosol Sci*, 2005, 36, 830-845.
- Tang K, Smith RD. Physical/chemical separations in the break-up of highly charged droplets from electrosprays, *J Amer Soc Mass Spec*, 2001, 12, 343-347
- 63. Loscertales IG, Barrero A, Guerrero I, Cortijo R, Marquez M, Ganan-Calvo AM. Micro/nano, encapsulation via electrified coaxial liquid jets. *Science*, 2005, 295, 1695–1698.
- 64. Barrero A, Lopez-Herrera JM, Boucard A, Loscertales IG, Marquez M. Steady cone-jet electrosprays in liquid insulator baths, *J Colloid Interface Sci*, 2004, 272, 104-108.
- 65. Jayasinghe SN. Submerged electrosprays: A versatile approach for microencapsulation, *J Microencap*, 2007, 24, 430–444.
- 66. Gomez A, Bingham D, de Juan L, Tang K. Production of protein nanoparticles by electrospray drying, *J Aerosol Sci*, 1998, 29, 561-574.
- 67. Ciach T. Microencapsulation of drugs by electrohydro-dynamic atomization, *Internat J Pharmaceutics*, 2006, 324, 51-55.
- 68. Xu Y, Hanna MA. Electrospray encapsulation of water-soluble protein with polylactide, effects of formulations on morphology, encapsulation efficiency and release profile of particles, *Internat J Pharmaceutics*, 2006, 320, 30-36.
- 69. Balachandran W, Miao P, Xiao P. Electrospray of fine droplets of ceramic suspensions for thin-film preparation, *J Electrostat*, 2001, 50, 249-263.
- Jayasinghe SN, Edirisinghe MJ. A novel method of freeforming multiple tracks from concentrated suspensions, J Mater Res Innovat, 2003, 7, 62-64.
- 71. Jayasinghe SN. Self-assembled nanostructures via electrospraying, *Physica E: Low-dimensional Systems and Nanostructures*, 2006, 33, 398-406.
- 72. Jayasinghe SN, Sullivan AC. Electrohydrodynamic Atomization: An Approach to Growing Continuous Self-Supporting Polymeric Fibers, *J Phys Chem B*, 2006, 110, 2522-2528.
- Jayasinghe SN, Sullivan AC. Electrospraying: an in-situ polymerisation route for fabricating high macroporous scaffolds, J Sol-Gel Sci Tech, 2006, 38, 293-302.
- 74. Sullivan AC, Jayasinghe SN. Development of a direct three-dimensional biomicrofabrication concept based on electrospraying a custom made siloxane sol, *Biomicrofluidics*, 2007, 1, 034103.
- 75. Sullivan AC, Scott K, Jayasinghe SN. Nanofabrication by electrohydrodynamic jetting of a tailor-made living siloxane sol, *Macromolecular Chem Physics*, 2007, 208, 2032-2038.
- 76. Irvine S, Sullivan AC, McEwan JR, Jayasinghe SN. A unique physical-chemistry approach for fabricating cell friendly surfaces, *Biotech J*, DOI: 10.1002/biot. 200700111.
- 77. Hohman MM, Shin M, Rutledge GC, Brenner MP. Electrospinning and electrically forced liquid jets: I. Stability theory, *Phys Fluids*, 2001, 2201-2220.
- 78. Hohman MM, Shin M, Rutledge GC, Brenner MP. Electrospinning and electrically forced liquid jets: II. Applications, *Phys Fluids*, 2001, 2221-2236.
- 79. Theron SA, Zussman E, Kroll E. Multiple jets in electrospinning: experiment and modelling, *Polymer*,

2005. 46. 2889-2899.

- 80. Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS. *Electrospinning of Nanofibers*, 2005, 96, 557-569.
- 81. Han D, Gouma PI. Electrospun bioscaffolds that mimic the topology of extracellular matrix, *Nanomedicine: Nanotechnology, Biology, and Medicine*, 2006, 2, 37-41.
- 82. Yim EKF, Leong KW. Significance of synthetic nanostructures in dictating cellular response, *Nanomedicine: Nanotechnology, Biology, and Medicine,* 2005, 1, 10-21.
- 83. Hughes GA. Nanostructure-mediated drug delivery, *Nanomedicine: Nanotechnology, Biology, and Medicine*, 2005, 1, 22-30.
- 84. Wong K. Development of nanomedicine in Hong Kong, *Nanomedicine: Nanotechnology, Biology, and Medicine*, 2006, 2, 297.
- 85. http://www.espintechnologies.com/
- 86. Lee KH, Kim HY, Bang HJ, Jung YH, Lee SG. The change of bead morphology formed on electrospun polystyrene fibers, *Polymer*, 2003, 44, 4029-4034.
- 87. Li M, Mondrinos MJ, Gandhi MR, Ko FK, Weiss AS, Lelkes PI. Electrospun protein fibers as matrices for tissue engineering, *Biomaterials*, 2005, 26, 5999-6008.
- 88. Chew SY, Hufnagel TC, Lim CT, Leong KW. Mechanical properties of single electrospun drug-encap-

sulated nanofibres, Nanotech, 2006, 17, 3880-3891.

- 89. Zeng J, Xu X, Chen X, Liang Q, Bian X, Yang L, Jing X. Biodegradable electrospun fibers for drug delivery, *J Controlled Release*, 2003, 92, 227-231.
- 90. Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC. The effect of processing variables on the morphology of electrospun nanofibers and textiles, *Polymer*, 2001, 42, 261-272.
- 91. Macias M, Chacko A, Ferraris JP, Balkus KJ. Electrospun mesoporous metal oxide fibers, *Micropor Mesopor Mater*, 2005, 86, 1-13.
- 92. Jayasinghe SN, Qureshi AN, Eagles PAM. Electrohydrodynamic jet processing: An advanced electric-field-driven jetting phenomenon for processing living cells, *Small*, 2006, 2, 216-219.
- 93. Jayasinghe SN, Eagles PAM, Qureshi AN. Electric field driven jetting: an emerging approach for processing living cells, *Biotech J*, 2006, 1, 86-94.
- 94. Townsend-Nicholson A, Jayasinghe SN. Cell electrospinning: a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds, *Biomacromolecules*, 2006, 7, 3364-3369.
- 95. Jayasinghe SN, Irvine S, McEwan JR. Cell electrospinning highly concentrated cellular suspensions containing primary living organisms into cell-bearing threads and scaffolds, *Nanomedicine*, 2007, 2, 555-567.

- 96. Jayasinghe SN, Townsend-Nicholson A. Stable electric-field driven cone-jetting of concentrated biosuspensions, *Lab Chip*, 2006, 6, 1086-1090.
- 97. Jayasinghe SN, Townsend-Nicholson A, Bio-electrosprays: the next generation of electrified jets, *Biotech J*, 2006, 1, 1018-1022.
- 98. Jayasinghe SN, Edirisinghe MJ. Electrically forced jets and microthreads of high viscosity dielectric liquids, *J Aerosol Sci.* 2004, 35, 233-243.
- 99. Odenwälder PK, Irvine S, McEwan JR, Jayasinghe SN. Bio-electrosprays: A precision "drop and place" paradigm for safe handling and deployment of primary living organisms, *Biotech J*, 2007, 2, 622-630.
- 100. Barry SP, Jayasinghe SN, Latchman DS, Stephanou A. Bio-electrospraying primary neonatal cardiac myocytes, *BioProcessing J*, 2007, 6, 8-14.
- 101. Lim F, Sun AM. Microencapsulation islets as bioartificial endocrine pancreas, *Science*, 1980, 210, 908-910.
- 102. Cirone P, Bourgeois JM, Chang PL. Antiangiogenic cancer therapy with microencapsulated cells, *Human Gene Therapy*, 2003, 14, 1065-1077.
- 103. AlHendy A, Hortelano G, Tannenbaum GS, Chang PL. Growth retardation—an unexpected outcome from growth hormone gene therapy in normal mice with microencapsulated myoblasts, *Human Gene Therapy*, 1996, 7, 61-70.

s more biopharmaceutical products enter clinical trials and commercial production, it is becoming ever more challenging to guarantee the supply of critical raw materials and disposable process components. The sheer volume of some raw materials is testing the limits of many suppliers, while more applications move toward the use of prepared and pre-sterilized materials. Concurrently, quality control expectations are expanding to keep pace with the availability of increasingly powerful analytical techniques.

As a response to these trends, reliable vendors must be identified, evaluated, and then worked with closely to make sure they understand and are able to satisfy the volume, quality, documentation, and communication requirements of this rapidly growing industry.

Topics

- Disposable Process Systems
- Animal-Sourced Materials
- Vendor Certification of Materials
- Media and Nutrient Supplements
- Regulatory and Legal Ramifications
- Outside Testing Services
- Managing Vendor Relationships

- Cell Lines
- In-House Testing Requirements
- Contract Manufacturers and CROs
- Technology Transfer
- Disposable Bioprocess Equipment
- Biologics Process Development