BioProcessing Journal

Advances & Trends In Biological Product Development

The ACE System: A Versatile Chromosome Engineering Technology with Applications for Gene-Based Cell Therapy

By CARL F. PEREZ, SANDRA L. VANDERBYL, KATHLEEN A. MILLS, and HARRY C. LEDEBUR, Jr.

urrent in vivo gene therapy (GT) approaches are beginning to demonstrate significant clinical and safety limitations that may ultimately reduce their therapeutic utility. In particular, the potential for systemic toxicity due to the gene transfer vector, the inability to administer multiple doses due to the antigenicity of the gene transfer vector, the prospect of insertional mutagenesis/oncogenesis during gene transfer, and the possibility of germ line transfer of the transgene are issues raising concern.^{1–5} One promising alternative to gene therapy that mitigates these clinical and safety issues is gene-based cell therapy (GBCT), in which autologous cells are removed from a patient and modified ex vivo for a desired characteristic prior to reimplantation. By transferring the transgene ex vivo, many of the issues surrounding the *in vivo* use of the transfer vectors are reduced and issues surrounding germ line transfer can be practically eliminated.

As a result, GBCTs are rapidly emerging as a viable clinical strategy for the treatment of diseases that have become the typical targets of *in vivo*

Table 1. Clinical Trials in Gene-Based Cell Therapy*						
Class	Vector	Indications			Total	
		Cancers	Genetic Diseases	Infectious Diseases	Acquired Diseases	
Viral	Retrovirus	124	38	30	5	197
	Lentivirus	_	_	1	_	1
	Adenovirus	25	_	3	_	28
	AAV	2	_	_	_	2
Non-Viral	Naked DNA	22	1	_	1	24
	Formulated DNA	14	_	_	_	14
	Formulated RNA	10	_	_	_	10
Total		197	39	34	6	276
*From http://www.wiley.co.uk/genetherapy/clinical/ (Updated January 31, 2004)						

gene therapy (Table 1); i.e., cancer, infectious diseases, and metabolic and autoimmune disorders for which gene replacement, enhanced immunological responses, or administration of growth factors and metabolic regulators are believed to elicit a therapeutic or ameliorative effect. To this end, GBCT now represents approximately 29 percent of the ongoing gene therapy clinical trials, and all indications are that this percentage will continue to increase over the coming years.

Gene therapy and GBCT currently rely on similar gene delivery vehicles and reagents to introduce the transgene(s) (Table 2). As a result, gene transfer, regardless of whether it occurs *in vivo* or *ex vivo*, suffers from the limitations of low DNA carrying capacity, insertional mutagenesis/oncogenesis, short-term transgene expression, and/or delivery efficiency (Table 2). Specifically, integration of retroviral

vectors into the host chromosome has led to variegated gene expression, insertional mutagenesis, and oncogenesis.^{4,5} Recent concerns have been raised with adeno-associated virus (AAV) vectors regarding the presence of DNA vector sequences detected in semen samples from patients in a phase 1 clinical trial, and the association of AAV integration with chromosomal deletions and other rearrangements that frequently are located on human chromosome 19.^{2,3} With respect to non-integrating vectors such as adenoviral vectors, the primary concern is transient transgene expression, which in the case of in vivo gene therapy, necessitates repeated administrations.^{1,6} All viral methods have a limited DNA carrying capacity, which prevents transfer of multiple transgenes or long stretches of genomic Finally, non-viral methods are simply not robust enough from the perspective of DNA delivery and

Carl F. Perez, Ph.D. (cperez@chromos.com) is the director of projects, Sandra L. Vanderbyl is an associate scientist, Kathleen A. Mills, Ph.D. is a senior staff scientist, and Harry C. Ledbur, Jr., Ph.D. is vice president, research and development; Chromos Molecular Systems Inc., Burnaby, British Columbia, Canada.

long-term transgene expression. Thus, there has been considerable effort to develop technologies for gene therapy and GBCT that are phenotypically and immunologically "inert," are maintained autonomously with the host cell genome, and can carry large "payloads" of DNA sequences for regulated stable transgene expression (e.g., locus con-

ment regions, tissue specific promoters, genomic sequences). In light of the historical in vivo gene therapy setbacks with viral vectors, it is critical to further incorporate relevant safety features (e.g., suicide genes, inducible promoters) into gene-modified delivery vehicles.^{4,5,7} One technology that offers a potential solution to the above

Table 2. Major Vectors I	Developed for Gene	: Therapy and Gene-Ba	sed Cell Therapy
--------------------------	--------------------	-----------------------	------------------

Vector Type	Examples	Advantages	Disadvantages
Integrating RNA Viruses	Retrovirus	Long-term expression Low immunogenicity	Potential insertional mutagenesis Infects only dividing cells Transduction efficiency ≈ 1% Low insert capacity ≈ 8 Kbp
	Lentivirus	Infects dividing & quiescent cells Long-term expression Low immunogenicity Transduction efficiency > 40%	Potential insertional mutagenesis Low insert capacity ≈ 8 Kbp
	Foamy Virus	Infects dividing & quiescent cells Long-term expression Low immunogenicity Transduction efficiency > 85%	Potential insertional mutagenesis Low insert capacity ≈ 12 Kbp
Non-integrating RNA Viruses	Sindbis Virus, Semliki Forest Virus	Infects dividing & quiescent cells Non-integrating virus High transient expression Transduction efficiency ≈ 10%	Low insert capacity ≈ 5 Kbp Transient expression
DNA Viruses	AAV	Infects dividing & quiescent cells High transient expression Low immunogenicity Very low integration Transduction efficiency > 95%	Low insert capacity ≈ 4 Kbp Requires helper viruses Transient expression
	Adenovirus	Infects dividing & quiescent cells Non-integrating virus High transient expression Transduction efficiency > 90%	Cellular immune response/ rejection Transient expression Low insert capacity ≈ 8 Kbp
	Herpes Simplex Virus	 Infects dividing & quiescent cells Non-integrating virus Good insert capacity ≈ 35 Kbp Transduction efficiency > 90% 	Cellular immune response/ rejection High to moderate cytotoxicity
Non-viral	Naked DNA, Complexed DNA	Low immunogenicity Good safety profile Simple manufacturing	Potential insertional mutagenesis Transient expression Stable transfection efficiencies < 0.1 – 1%

Table 3. Artificial Chr	omosome Technol	ogy for Gen	e-Based Cell Therapy
-------------------------	-----------------	-------------	----------------------

table 51 Authoral amonosome realmology for delic basea dell'inerapy				
Type of Artificial Chromosomes	Average Size	Features	Limitations	
Seeded Centromeres ("Bottom-Up")	3–10 Mbp	Functional synthetic centromeres & telomeres	De novo formation in target cells No high yield isolation or efficient transfer Loading transgene requires de novo formation	
Fragmented Chromosomes ("Top-Down")	0.7 – 6 Mbp	Natural centromeres Natural or synthetic telomeres	No high yield isolation or efficient transfer	
Episomes (EBV-based)	0.7 – 0.9 Mbp	High transgene copy number Good transfection efficiency	Target cells require EBV tumor antigen gene expression No vector copy control	
Marker Chromosomes	3 – 100 Mbp	Occur naturally Natural centromeres & telomeres	No high yield isolation or efficient transfer	
Satellite DNA-Based Artificial Chromosomes (SATACs)	60–360 Mbp	Natural centromeres & telomeres Isolated to a high yield & purity Transferable	Stable transformation efficiency < 0.1% Loading transgene requires <i>de novo</i> amplification	

ficial chromosome.

Mammalian Artificial Chromosomes

Mammalian artificial chromosomes (MACs) are the most promising among the categories of artificial chromosome technologies that are being evaluated as safer, more stable gene delivery vehicles for GBCT, and numerous recent reviews have been published.^{8–19} Several approaches to generating human mammalian artificial chromosomes have been reported, as summarized in Table 3. In one approach — centromere seeding artificial chromosomes are assembled de novo in cells from co-transfected DNAs that encode putative human centromeres, telomeres, and bacterial drug-resistant marker genes.^{20–26} A second approach involves generating minichromosomes by fragmenting natural human chromosomes via telomeredirected breakage or by identifying naturally occurring fragmented human chromosomes.^{27–38} Both approaches generate artificial chromosomes with functional centromeres and telomeres that are stably maintained alongside the host cell's chromosomes. A third approach creates artificial episomal chromosomes that require the use of the Epstein-Barr virus gene product, EBNA-1, to enable replication and persistence in lieu of functional centromeres and telomeres.^{39–43} These vectors do not technically segregate as normal chromosomes, but actually "tether" to metaphase chromosomes during mitosis by the binding to EBNA-1 protein that in turn binds to the histone protein components of mammalian chromosomes.44

Although attractive as vectors for GBCT, all three of the above approaches possess practical and technical limitations. Most notable is the inability to isolate and purify centromere-seeded and fragmented-chromosome MACs. One technical option to deliver these MACs to patient cells is microcell mediated gene transfer (MMGT), but MMGT is not clinically feasible due to its tedious production of a heterogeneous population of microcells (endogenous chromosomes and minichromosomes) and the concomitant very low transfer

efficiencies ($\sim 10^{-7} - 10^{-6}$) of the desired minichromosomes via microcell and host cell fusion. This lack of a clinically feasible MAC transfer procedure necessitates that these MACs be generated de novo in the desired target cell for both centromere seeding and chromosome fragmentation, which is an extremely inefficient process. Moreover, there is little to no predictable relationship between input DNA and de novo chromosomes' composition upon generation, making downstream characterization and quality control difficult. In addition, if a single subclone cannot be obtained and expanded to clinically relevant levels, the reimplanted GBCT product will contain a heterogeneous population of cells with respect to MAC composition and structure. With respect to centromere seeding, there is also the possibility that rearrangements and genomic integrations will occur when the transfected DNA fails to form new chromosomes. For the episomal vectors, there are safety concerns regarding the potential co-expression of a viral gene product (e.g., antigenicity), or gene dosage effects arising from variable copy numbers of the episomal chromosome. Therefore, for practical and clinically relevant application of artificial chromosome technologies to GBCTs, a dramatic improvement in generation and portability is needed. To this end, ACEs and the ACE System were envisioned.

ACEs and the ACE System

ACEs. Hadlaczky and colleagues have developed a unique methodology to construct artificial chromosomes by the induction of large-scale amplifications of "satellite" sequences composing the pericentromeric heterochromatin (Table 3).45,46 De novo centromeres and dicentric chromosomes were formed upon the integration of exogenous DNA sequences into regions of specific acrocentric mouse and human chromosomes that contain pericentromeric heterochromatin and the tandemly repeated ribosomal genes (rDNA). Ensuing breakage during mitosis generated new chromosomes ranging in size from 10 to 360 million base pairs. 47-49

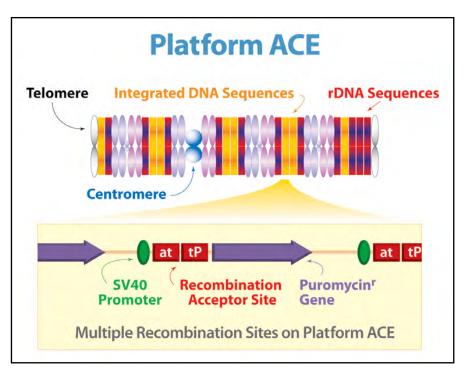


Figure 1. Schematic representation of Platform ACE. Platform ACE (depicted as a metaphase chromosome) encodes more than 50 copies of a recombination acceptor site cassette. Each acceptor site cassette encodes an SV40 promoter, *att*P recombination acceptor site, and the open reading frame of the puromycin resistance gene.

These satellite-DNA based MACs are referred to as SATACs (Satellite DNA-based Artificial Chromosomes) or ACEs (formerly Artificial Chromosome Expression systems). This amplification mechanism has been successfully applied to rodent (mouse and hamster), human, and plant cells.

ACEs are attractive gene delivery vehicles for GBCT, given that they may be genetically engineered, characterized, purified, and easily transferred between cell types.⁵⁰ Briefly, transgenes have been targeted onto existing ACEs by homologous DNA recombination (unpublished data) or by incorporation of the transgene into de novo generated ACEs.⁵¹ The transgene-loaded ACEs can be isolated by dual flow cytometry to high purities and yields, and have been transferred in vitro into a variety of mammalian cell lines and primary cells by cationic lipids and dendrimers.^{52–55} Transgenic mice have also been generated by microinjecting purified ACEs into the pronuclei of fertilized oocytes.⁵⁶ The ACEs were stably maintained in these mice and passed through four generations of the germline.⁵⁷ All of the transgenic mice were healthy, robust, displayed no obvious abnormal phenotype, and manifested no neoplasms. These founders and their progeny offered the first indication that ACEs were stable, non-integrating, and non-deleterious in vivo, which are strong safety features for future clinical applications. Additional safety may be engineered into ACEs by the introduction of tissue specific promoters. As a proof-of-concept, a second line of ACE-transgenic mice was generated in which a therapeutic protein gene under the control of a mammary tissue specific promoter was expressed only in the mammary gland during lactation (unpublished data).

The ACE System. The ACE System was developed to efficiently, rapidly, and reproducibly engineer existing ACEs rather than having to continuously generate ACEs *de novo*. This novel system incorporates features of the mechanism used by bacteriophage lambda (λ) to integrate itself into the host chromosome of *E. coli*.

The λ -phage genome carries a specific integration site, *attP*, which is partially homologous to a smaller site on the bacterial chromosome, *attB*. The phage

also encodes a site-specific integrase, *Int*, that catalyzes recombination between the *att*P and *att*B sites, thereby inserting the λ -DNA into the host chromosome. For the integration process to occur in nature, a number of protein factors encoded by the host bacterium are also required.

Components of the λ -Int process have been modified and adapted to create a proprietary integration system

for ACEs. It is designed so that the *att*P site resides on the ACE, the *att*B site is adjacent to the DNA sequence to be integrated on the ACE, and *Int* protein is co-delivered on a separate DNA plasmid. In addition, the gene encoding the *Int* protein has been site-specifically engineered to produce a novel recombinase (ACE Integrase) that catalyzes integration in the absence of any *E. coli* host factors. Integration is

essentially unidirectional in mammalian cells, as the λ -phage excision protein Xis is not present.

A murine derived ACE containing multiple attP sites (>50), referred to as the Platform ACE, was generated (Fig. 1) (unpublished). The Platform ACE shares all the characteristics of ACEs described previously, including their inherent stability, and ease of purification and transferability to a variety of cell lines and cell types. As such, the ACE System can be readily established in virtually any mammalian cell through transfer of the Platform ACE. Another significant advantage of having a single universal Platform ACE is that it can be extensively characterized with respect to composition and organization, thereby providing a consistent molecular framework for downstream applications. Not only does this feature offer the ability to control the quality of resultant ACEs, but it also provides an inherent reproducibility and reliability to the system, as the same molecular context can be systematically targeted for transgene integration and expression.

Each recombination acceptor site cassette on the Platform ACE consists of an attP site flanked by an SV40 promoter at the 5'-position and an open reading frame sequence encoding the puromycin resistance (puromycin^R) gene at the 3'-position (which confers puromycin resistance to cells carrying the Platform ACE)(Fig. 1). The ACE Targeting Vector (ATV) was designed to systematically transfer onto or "load" the Platform ACE with either a single or multiple transgenes. Each of the ATVs encodes an attB site upstream of a promoterless secondary drug-selectable marker gene (e.g., zeocin^R, blasticidin^R, neomycin^R, or hygromycin^R), which becomes activated when the ATV integrates correctly via recombination between the attB and attP sites (Fig. 2). The combination of the multiple attP sites and the "unidirectional" ACE Integrase enables multiple loadings (during a single transfection) or sequential loadings (via multiple transfections) with the ATVs. We have not observed any ATV excision from the Platform ACE, which is not surprising, as the ACE Integrase requires the bacterial Xis protein to catalyze excision.

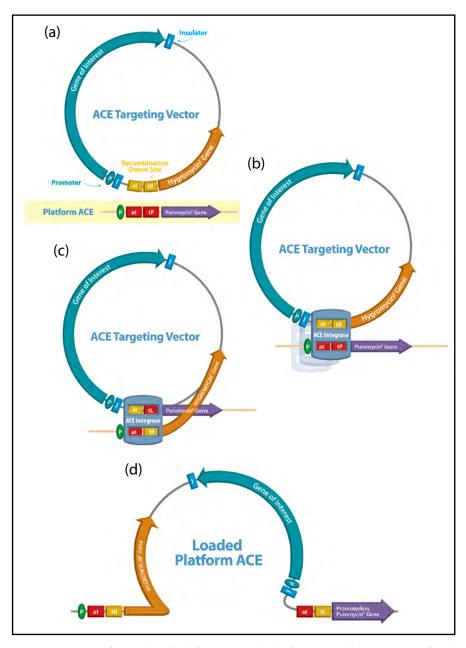


Figure 2. Site-Specific Loading of Platform ACE. The Platform ACE cell line is co-transfected with the ACE Targeting Vector (ATV) and ACE Integrase plasmid. (a) The ATV encodes an *att*B donor site and the promoterless hygromycin resistance gene. (b) The ACE Integrase protein binds at the aligned *att*P and *att*B sites, and (c) catalyzes recombination between the ATV and the acceptor cassette. Precise DNA recombination activates the hygromycin resistance gene, and (d) enables the identification of desired recombinants after hygromycin selection.

Engineering. Genetically modifying a Platform ACE using the ACE System is accomplished simply by co-transfecting an ATV (which is loaded with the transgene) and a plasmid encoding the ACE Integrase into a Platform ACE host cell line. Transfection, isolation of clones, and subsequent verification of transgene loading can be completed within eight to 12 weeks. Typically, more than 80 percent of the drug-resistant clones contain accurately loaded ACEs (a 240fold enrichment compared to homologous recombination). High levels of gene expression have been measured for ACEs loaded with monoclonal antibodies (>30 pg/cell•day), for erythropoietin (epo) (>800 IU/10⁶ cells•day), and for fluorescent proteins (red and green, unpublished data). In addition, we have sequentially loaded a Platform ACE with an ATV encoding the humanized Renilla GFP (hrGFP-ATV), followed by an epo-ATV, generating a hrGFP-epo-ACE for ex vivo studies (unpublished data). Moreover, ACEs have tremendous carrying capacities and have been able to carry payloads exceeding 1.25 Mbp (unpublished data).

Isolation. A powerful feature of the Platform ACE is that it can be isolated efficiently from the host chromosomes by dual high-speed flow cytometry. As mentioned above, this allows a single ACE to be consistently transferred between cell types. In order to isolate the ACEs, cells are blocked in metaphase and mechanically ruptured to release condensed chromosomes prior to flow sorting. Hoechst 33258 and chromomycin-A3 bind preferentially to AT- and GC-basepairs, respectively. Platform ACEs are composed of more than 350,000 copies of the AT-rich 234bp mouse major satellite sequences, and hence bind more Hoechst 33258 and less chromomycin-A3 than the endogenous host cell chromosomes. The dualstained ACEs are readily distinguished and separated from the host chromosomes at sort rates exceeding one million ACEs/hour/sorter and at purities exceeding 99 percent. Establishing these parameters engendered a pilot production facility focused on the large-scale isolation of ACEs for applications in biopharmaceutical production, transgenesis, and gene-based cell therapy.⁵²

Delivery & Transfer. The Platform ACE and ACEs can be readily delivered and transferred to a variety of cells and cell types through transfection, microinjection, and microcell mediated chromosome transfer (MMCT). ACEs have been microinjected into the pronuclei of fertilized oocytes, generating transgenic mice and bovine blastocysts at an efficiency, for mice, consistent with conventional murine transgenesis.^{56–58} ACEs have also been introduced into various mammalian cells (e.g., rodent, human, bovine) by MMCT, although only at transfer efficiencies from 10-7 to 10-5.59 Implementing a rapid and reproducible iododeoxyuridine labeling and detection method for ACEs has facilitated efficient ACE transfer to both primary cells and cell lines via cationic lipids and dendrimers.⁵⁴ ACE transfection efficiencies in the range of 10⁻³ to 10⁻² are routinely attained using commercially available cationic reagents and employing simple formulation protocols.^{53–55}

The unique capability to transfer loaded Platform ACEs can be exploited in numerous ways; in particular, to audition host cells for advantageous characteristics or properties (e.g., increased gene expression, protein secretion, or if desired, post-translational modification). As an example, a Platform ACE (carried in a CHO cell line) was loaded with both heavy and light chain immunoglobulin genes of a monoclonal antibody (MAb), generating a MAb-ACE. The resultant MAb-ACE production cell line was shown to secrete the MAb at a specific productivity of 12 pg/cell•day. The MAb-ACEs were subsequently isolated and transferred into the parental CHO cell line (without the Platform ACE). The MAb-ACE remained functional and the expression levels of the transfected "daughter" cell lines were not statistically different from the original production cell line (11.4, 13.8, 12.5 pg/cell•day, respectively). In addition, the isolated MAb-ACE was transferred to a different CHO strain, with the resultant clones secreting the MAb at 55 pg/cell•day. Similarly, different cell types (e.g., HSCs, MSCs, myoblasts)

may be auditioned to identify target delivery cells with desirable qualities for gene-based cell therapy indications.

Gene-Based Cell Therapy

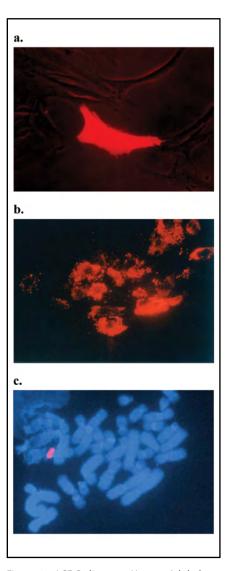


Figure 3. ACE Delivery to Human Adult Stem Cells. An ACE encoding the red fluorescent protein (RFP) gene was generated (RFP-ACE). Human mesenchymal stem cells (hMSCs) derived from bone marrow were transfected with purified RFP-ACEs by standard techniques (see text). (a) A transfected hMSC expressing RFP. (b) RFP expression from transfected hMSCs two weeks after chemically induced differentiation into adipocytes. The globular appearance is due to the accumulation of RFP in the oil drops within the adipocyte. (c) Fluorescent in situ hybridization of a transfected hMSC. A metaphase spread was hybridized with an ACEspecific DNA probe and detected with a rhodamine reagent (red signal). The ACE is intact and maintained as an autonomous chromosome.

We are currently applying the ACE System technology to human mesenchymal stem cells (hMSCs), which are appealing cell moieties due to their ease of purification from bone marrow, and their ability to expand without loss of differentiation potential.⁶⁰ In addition, they are candidates for "universal donor" cells as they have been shown to suppress T-cell lymphocyte proliferation and do not present alloantigens.61-63 For our initial studies, ACEs encoding red fluorescent protein (RFP) genes were generated and introduced into hMSCs using commercially available transfection reagents.55 Not only did the transfected cells express RFP, but they also maintained RFP expression when differentiated along adipogenic and osteogenic lineages (Fig. 3). Although preliminary, the data suggests that ACEs and their expression products can be maintained for prolonged periods in culture (>2 weeks), and that the presence of an ACE does not diminish the multi-potential differentiation capacity of these stem cells.⁵⁵

Simultaneously, we have demonstrated that a loaded Platform ACE encoding a blood hormone protein could elicit a therapeutic response in a small animal model. The gene encoding human epo, a hematopoietic growth hormone involved in the stimulation of red blood cell production, was loaded onto the Platform ACEs carried in both LMTKand CHO cells.64 When these cells were implanted in immunodeficient mice, they secreted therapeutic quantities of epo that produced statistically significant elevations in hematocrits (P < 0.05; Table 4).

Currently, we are building on the successes of these preliminary experiments and conducting longer term in vivo proof-of-principle studies using epoloaded ACEs and hMSCs. Two ATVs were engineered to encode the hrGFP and the human epo genes, respectively, and sequentially loaded onto the Platform ACE, generating a hrGFPepo-ACE. These ACEs were isolated to 99% purity by flow cytometry and then transferred into hMSCs using cationic reagents. The transfected hMSC population was enriched to 20% GFP+ cells by flow cytometry, which in turn secreted epo in the range of 50-100 IU/106cells•day. The population of extrapolated 100% GFP+ cells would attain levels of epo expression (250-500 IU/10⁶cells•day) which are comparable to those attained with multiple cycles of epo-retroviral transductions in MSCs (100-700 IU/106 cells day).65 Currently, we are implanting these epo-expressing hMSCs into NOD/SCID mice and will monitor hematocrits over extended periods of time.

Although cells with self-renewing or expansion capabilities (>30 population doublings) work well with the current ACE transfer efficiencies and potential drug selectable human marker genes (e.g., MDR-1, methylguanine methyltransferase, cytidine deaminase), there is a need to develop synergistic technologies that do not require substantial enrichment steps. Therefore, we have begun internal development efforts to attain stable ACE transfection efficiencies comparable to viral transduction levels (>90%). Once established, we envision that ACEs can be transferred to cells with a limited expansion capacity, thereby opening up additional clinical and therapeutic opportunities.

Applications. Monogenic and acquired diseases are the primary candi-

Table 4. In vivo Therapeutic Responses with ACE-Modified Cell Lines

Cells Implanted]	P value	
into SCID mice	Control	Experimental	
	(Platform ACE)	(Platform ACE + Epo gene)	
LMTK (mouse)	$51.2 \pm 1.4 \%$	65.2 ± 1.5 %	0.00000005
	(n = 6)	(n = 5)	
CHO (hamster)	49.0 ± 1.7 %	65.1 ± 1.1 %	0.0008
	(n=4)	(n=2)	

10⁶ ACE-Modified cells were implanted subcutaneously into SCID mice. Hematocrits were determined at 2 weeks (LMTK cells) and 3 weeks (CHO cells) post-implantation.

Table 5. Potential Applications for ACE System Technology

Indications/Applications	Examples			
	Disease	Target Cells	Genes	
Lysosomal storage	Sandhoff	NSCs, MSCs	Hexosaminidase B	
disorders	Krabbe	NSCs, MSCs	Galactosylceramidase	
	Gaucher	MSCs, HSCs	β-Glucosidase	
	Hurler	MSCs, HSCs	α-L-Iduronidase	
Hematological	Hemophilia A	MSCs, HSCs	FVIII	
diseases	Hemophilia B	MSCs, HSCs	FIX	
	β-Thalassemia	HSCs	β-globin	
	Anemia	MSCs, HSCs	Erythropoietin	
Immunodeficiency	X-linked SCID	HSCs	γc cytokine receptor	
diseases	Adenosine deaminase def.	HSCs	Adenosine deaminase	
	Chronic granulomatous disease	HSCs	gp91phox	
Other genetic diseases	Osteogenesis imperfecta	MSCs	Type I collagen	
	Leukocyte adhesion deficiency	HSCs	CD18	
	Familial hypercholesterolemia	Hepatocytes	LDLR	
	Gyrate atrophy	Keratinocytes	Ornithine aminotransferase	
	Rheumatoid arthritis	Synoviocytes	IL-1, TNFR	
	Parkinson's disease	NSCs	Glial-derived neurotrophic factor	
	Alzheimer's disease	NSCs	Nerve growth factor	
	Myocardial ischemia	Endothelial cells	VEGF	
Cancer	Melanoma	TILs	TNF	
		Auto. fibroblasts	Cytokines: IL-1, -2, -6, -12, TNF	
		Allo. tumor cells	Cytokines: GM-CSF	
		Auto. tumor cells	Cytokines: GM-CSF	
		Dendritic cells	Cytokines: IL-1, -2, -6, -12, TNF	
			Co-stimulatory: CD80, CD86	
	Melanoma, prostate	Dendritic cells	Tumor-associated antigens	
		Allogeneic cells	Cytokines + co-stim. molecules	
Infectious diseases	HBV, CMV, EBV	T cells, APCs	Viral core proteins	
	HIV	HSCs, CTLs	Multiple genes	
Enhancing cell therapies	Leukemia	MSCs	Genes for HSC expansion	
& chemotherapy		HSCs	MDR-1, MGMT, CD	
Imprinting stem cells	Cancer; regenerative medicine	HSCs, MSCs	Genes that control differentiation	
Evaluating stem cell fate		HSCs	HOXB4, β-catenin; GFP	
APCs = Antigen pro		Co = Naural stam o		

CTLs = Cytotoxic T lymphocytes

HSCs = Hematopoietic stem cells

MSCs = Mesenchymal stem cells

NSCs = Neural stem cells

TILs = Tumor infiltrating lymphocytes

X-linked SCID = X-linked severe combined immunodeficiency

dates for ACE-modified gene-based cell therapy (Table 5). Lysosomal storage disorders are a group of more than 40 diseases that are caused by the pronounced deficiency of one or more lysosomal enzymes.66-68 This enzymatic deficiency leads to an accumulation of undegraded substrate in the lysosome, which in turn can lead to various cellular and tissue damage, subsequent organ failure, and even premature death. In addition, monogenic hematological diseases (hemophilias A and B, hemoglobinopathies, and anemia) along with immunodeficiency diseases (X-linked severe combined immunodeficiency, adenosine deaminase deficiency, and chronic granulomatous diseases) are suitable clinical targets. Acquired diseases amenable to GBCT include autoimmune (e.g., rheumatoid arthritis), neurodegenerative (e.g., Parkinson's, Alzheimer's), and vascular (e.g., myocardial ischemia) diseases.

For monogenic and acquired diseases, we currently envision a strategy for GBCT, in which autologous stem cells will be isolated, transfected with ATV-loaded Platform ACEs, expanded, characterized for release, and re-implanted in the patient. Currently, we have several collaborations with academic laboratories engaged in investigating the potential of ACE-modified gene-based cell therapy to treat selected monogenic diseases.

Immunotherapy also offers an opportunity for the application of the ACE System technology, particularly the capability of transferring payloads of multiple genes to appropriate cell targets (Table 5). Cellular vaccines consisting of autologous fibroblasts, autologous tumor cells, allogeneic tumor cells, or mixtures of cells may be genetically modified with ACEs encoding multiple cytokines, co-stimulatory molecules, and tumor-associated antigens (TAAs) to increase efficacy. Dendritic cells may be genetically modified to become more effective antigen presenting cells (APCs) by the simultaneous expression of cytokines, co-stimulatory molecules, and as appropriate, TAAs or viral associated antigens. It is even possible to modify allogeneic or xenogeneic cells (e.g., fibroblasts) to generate artificial APCs.⁶⁹ For adoptive cellular immunotherapy, epitope-specific CTLs may be more efficiently activated and expanded *ex vivo* from the interactions with APCs modified with ACEs encoding co-stimulatory molecules and TAAs or viral proteins (e.g., CMV, HIV, HBV).

ACE System technology may also be used to enhance cell therapies and chemotherapy (Table 5). Autologous MSCs may be targeted with genes that enhance HSC expansion *in vivo* after chemotherapy or radiotherapy. Additionally, HSCs may be modified with human genes that encode drug resistance to chemotherapeutic agents: methylguanine methyltransferase, multiple drug resistance, dihydrofolate reductase, and cytidine deaminase. Using human encoded genes will eliminate the potential for a patient's immune system to expunge ACE-modified cells.⁷⁰

Summary

The ACE System is a versatile and unique technology that enables the rapid "loading" of transgenes onto a transportable artificial chromosome — the Platform ACE. These Platform ACEs contain natural centromeres and telomeres that provide autonomous maintenance through excellent mitotic/ meiotic stability along with tight control in the copy number of the ACE. The Platform ACEs' large payload capacities (>1.25 Mbp) and multiple integration acceptor sites impart novel capabilities to drive transgene expression to high levels (by loading multiple ATVs) while simultaneously allowing for the incorporation of additional transgenes. Moreover, the "unidirectional" integration feature of the ACE Integrase permits sequential and multiple loadings onto the Platform ACE without the loss of previously integrated DNA sequences. Additionally, these efficiently loaded Platform ACEs may be isolated to highly purified yields, and subsequently transferred to a plethora of primary cells and cell lines utilizing commercially available reagents.

The ACE System offers compelling advantages over current gene delivery technologies for GBCT, including increased safety, engineering versatility, and unique portability. We are exploiting these advantages in preliminary proof-of-principle experiments for GBCT using the ACE System. Our current focus is on transfecting loaded-ACEs into adult stem cells, particularly mesenchymal stem cells, that will in turn be implanted into animal models of lysosomal storage disorders. These studies will generate seminal data for the development of ACE System technology, and will hopefully usher in novel approaches for gene-based cell therapy indications using artificial chromosomes. We believe that the combination of the ACE System technology with the multi-potent, self-renewing properties of autologous human adult stem cells will provide a powerful therapeutic and clinical strategy for numerous intractable diseases.

REFERENCES

- 1. Christ M, Lusky M, Stoeckel F et al. Gene therapy with recombinant adenovirus vectors: evaluation of the host immune response. Immunol Lett 1997;57:19–25.
- 2. Couto LB. Preclinical gene therapy studies for hemophilia using adeno-associated virus (AAV) vectors. Semin Thromb Hemost 2004;30:161–171.
- 3. Miller DG, Rutledge EA, Russell DW. Chromosomal effects of adeno-associated virus vector integration. Nat Genet 2002;30:147–148.
- 4. Hacein-Bey-Abina S, Von Kalle C, Schmidt M et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2003;348:255–256.
- 5. Kaiser J. Gene therapy. Seeking the cause of induced leukemias in X-SCID trial. Science 2003;299:495.
- Ramos CA, Venezia TA, Camargo FA et al. Techniques for the study of adult stem cells: be fruitful and multiply. Biotechniques 2003;34:572–574,580–584, 586–591.
- 7. Raper SE, Chirmule N, Lee FS et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 2003;80:148–158.
- 8. Huxley C. Mammalian artificial chromosomes: a new tool for gene therapy. Gene Ther 1994;1:7–12.
- 9. Ascenzioni F, Donini P, Lipps HJ. Mammalian artificial chromosomes-vectors for somatic gene therapy. Cancer Lett 1997;118:135–142.
- 10. Vos JM. Mammalian artificial chromosomes as tools for gene therapy. Curr Opin Genet Dev 1998;8:351–359.
- 11. Brown WR, Mee PJ, Hong SM. Artificial chromosomes: ideal vectors? Trends Biotechnol 2000;18: 218–223.
- 12. Lipps HJ, Jenke AC, Nehlsen K et al. Chromosome-based vectors for gene therapy. Gene 2003;304:23–33.
- 13. Cooke H. Mammalian artificial chromosomes as vectors: progress and prospects. Cloning Stem Cells 2001;3:243–249.
- 14. Lewis M. Human artificial chromosomes: emerging from concept to reality in biomedicine. Clin Genet

2001;59:15-16.

- 15. Lipps HJ, Bode J. Exploiting chromosomal and viral strategies: the design of safe and efficient non-viral gene transfer systems. Curr Opin Mol Ther 2001;3:133–141.
- 16. Grimes BR, Warburton PE, Farr CJ. Chromosome engineering: prospects for gene therapy. Gene Ther 2002;9:713–718.
- 17. Grimes BR, Rhoades AA, Willard HF. Alphasatellite DNA and vector composition influence rates of human artificial chromosome formation. Mol Ther 2002:5:798–805.
- 18. Larin Z, Mejia JE. Advances in human artificial chromosome technology. Trends Genet 2002;18:313–319.
- 19. Saffery R, Choo KH. Strategies for engineering human chromosomes with therapeutic potential. J Gene Med 2002;4:5–13.
- 20. Harrington JJ, Van Bokkelen G, Mays RW et al. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat Genet 1997:15:345–355.
- 21. Warburton PE, Cooke HJ. Hamster chromosomes containing amplified human alpha-satellite DNA show delayed sister chromatid separation in the absence of de novo kinetochore formation. Chromosoma 1997; 106: 149–159.
- 22. Ikeno M, Grimes B, Okazaki T et al. Construction of YAC-based mammalian artificial chromosomes. Nat Biotechnol 1998;16:431–439.
- 23. Henning KA, Novotny EA, Compton ST et al. Human artificial chromosomes generated by modification of a yeast artificial chromosome containing both human alpha satellite and single-copy DNA sequences. Proc Natl Acad Sci USA 1999;96:592–597.
- 24. Ebersole TA, Ross A, Clark E et al. Mammalian artificial chromosome formation from circular alphoid input DNA does not require telomere repeats. Hum Mol Genet 2000;9:1623–1631.
- 25. Mejia JE, Willmott A, Levy E et al. Functional complementation of a genetic deficiency with human artificial chromosomes. Am J Hum Genet 2001;69:315–326.
- 26. Mejia JE, Alazami A, Wilmott A et al. Efficiency of de novo centromere formation in human artificial chromosomes. Genomics 2002;79:297–304.
- 27. Carine K, Solus J, Waltzer E et al. Chinese hamster cells with a minichromosome containing the centromere region of human chromosome 1. Somat Cell Mol Genet 1986:12:479–491.
- 28. Farr CJ, Stevanovic M, Thomson EJ et al. Telomere-associated chromosome fragmentation: applications in genome manipulation and analysis. Nat Genet 1992; 2:275–282
- 29. Farr CJ, Bayne RA, Kipling D et al. Generation of a human X-derived minichromosome using telomere-associated chromosome fragmentation. EMBO J 1995;14:5444–5454.
- 30. Barnett MA, Buckle VJ, Evans EP et al. Telomere directed fragmentation of mammalian chromosomes. Nucleic Acids Res 1993;21:27–36.
- 31. Heller R, Brown KE, Burgtorf C et al. Minichromosomes derived from the human Y chromosome by telomere directed chromosome breakage. Proc Natl Acad Sci USA 1996;93:7125–7130.
- 32. Shen MH, Mee PJ, Nichols J et al. A structurally defined mini-chromosome vector for the mouse germ line. Curr Biol 2000;10:31–34.
- 33. Au HC, Mascarello JT, Scheffler IE. Targeted integration of a dominant neo(R) marker into a 2- to 3-Mb human minichromosome and transfer between cells.

Cytogenet Cell Genet 1999;86:194-203.

- 34. Mills W, Critcher R, Lee C et al. Generation of an approximately 2.4 Mb human X centromere-based minichromosome by targeted telomere-associated chromosome fragmentation in DT40. Hum Mol Genet 1999;8:751–761.
- 35. Yang JW, Pendon C, Yang J et al. Human mini-chromosomes with minimal centromeres. Hum Mol Genet 2000:9:1891–1902.
- 36. Saffery R, Wong LH, Irvine DV et al. Construction of neocentromere-based human minichromosomes by telomere-associated chromosomal truncation. Proc Natl Acad Sci USA 2001;98:5705–5710.
- 37. Wong LH, Saffery R, Choo KH. Construction of neocentromere-based human minichromosomes for gene delivery and centromere studies. Gene Ther 2002;9:724–726.
- 38. Voet T, Vermeesch J, Carens A et al. Efficient male and female germline transmission of a human chromosomal vector in mice. Genome Res 2001;11:124–136.
- Krysan PJ, Haase SB, Calos MP. Isolation of human sequences that replicate autonomously in human cells. Mol Cell Biol 1989;9:1026–1033.
- Sun TQ, Fernstermacher DA, Vos JM. Human artificial episomal chromosomes for cloning large DNA fragments in human cells. Nat Genet 1994;8:33–41.
- 41. Calos MP. The potential of extrachromosomal replicating vectors for gene therapy. Trends Genet 1996:12:463–466.
- 42. Simpson K, McGuigan A, Huxley C. Stable episomal maintenance of yeast artificial chromosomes in human cells. Mol Cell Biol 1996;16:5117–5126.
- 43. Kelleher ZT, Fu H, Livanos E et al. Epstein-Barr-based episomal chromosomes shuttle 100 kb of self-replicating circular human DNA in mouse cells. Nat Biotechnol 1998:16:762–768.
- 44. Wu H, Ceccarelli DF, Frappier L. The DNA segregation mechanism of Epstein-Barr virus nuclear antigen 1. EMBO Rep 2000;1:140–144.
- 45. Hadlaczky G, Praznovszky T, Cserpan I et al. Centromere formation in mouse cells cotransformed with human DNA and a dominant marker gene. Proc Natl Acad Sci USA 1991;88:8106–8110.
- 46. Praznovszky T, Kereso J, Tubak V et al. De novo chromosome formation in rodent cells. Proc Natl Acad Sci USA 1991;88:11042–11046.
- 47. Kereso J, Praznovszky T, Cserpan I et al. De novo chromosome formations by large-scale amplification of the centromeric region of mouse chromosomes. Chromosome Res 1996;4:226–239.
- 48. Hollo G, Kereso J, Praznovszky T et al. Evidence for a megareplicon covering megabases of centromeric chromosome segments. Chromosome Res 1996;4:240–247.
- 49. Csonka E, Cserpan I, Fodor K et al. Novel generation of human satellite DNA-based artificial chromosomes in mammalian cells. J Cell Sci 2000;113:3207–3216.
- 50. Perez C, de Jong G, Drayer J. Satellite DNA-based artificial chromosomes-chromosomal vectors. Trends Biotechnol 2000;18:402–403.
- 51. Stewart S, MacDonald N, Perkins E et al. Retrofitting of a satellite repeat DNA-based murine artificial chromosome (ACes) to contain loxP recombination sites. Gene Ther 2002;9:719–723.
- 52. de Jong G, Telenius AH, Telenius H et al. Mammalian artificial chromosome pilot production facility: large-scale isolation of functional satellite DNA-based artificial chromosomes. Cytometry 1999;35:129–133.
- 53. de Jong G, Telenius A, Vanderbyl S et al. Efficient

- in-vitro transfer of a 60-Mb mammalian artificial chromosome into murine and hamster cells using cationic lipids and dendrimers. Chromosome Res 2001;9:475–485.
- 54. Vanderbyl S, MacDonald N, de Jong G. A flow cytometry technique for measuring chromosome-mediated gene transfer. Cytometry 2001;44:100–105.
- 55. Vanderbyl S, MacDonald GN, Sidhu S et al. Transfer and stable transgene expression of a mammalian artificial chromosome into bone marrow-derived human mesenchymal stem cells. Stem Cells 2004;22:324–333.
- 56. Co DO, Borowski AH, Leung JD et al. Generation of transgenic mice and germline transmission of a mammalian artificial chromosome introduced into embryos by pronuclear microinjection. Chromosome Res 2000;8:183–191.
- 57. Monteith DP, Leung JD, Borowski AH et al. Pronuclear microinjection of purified artificial chromosomes for generation of transgenic mice: pick-and-inject technique. Methods Mol Biol 2004;240:227–242.
- 58. Wang B, Lazaris A, Lindenbaum M et al. Expression of a reporter gene after microinjection of mammalian artificial chromosomes into pronuclei of bovine zygotes. Mol Reprod Dev 2001;60:433–438.
- 59. Telenius H, Szeles A, Kereso J et al. Stability of a functional murine satellite DNA-based artificial chromosome across mammalian species. Chromosome Res 1999:7:3–7.
- 60. Caplan Al, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 2001;7:259–264.
- 61. Bartholomew A, Sturgeon C, Siatskas M et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002;30:42–48.
- 62. Krampera M, Glennie S, Dyson J et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2003;101:3722–3729.
- 63. Di Nicola M, Carlo-Stella C, Magni M et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002;99:3838–3843.
- 64. Koury MJ, Bondurant MC. The molecular mechanism of erythropoietin action. Eur J Biochem 1992; 210:649–663.
- 65. Bartholomew A, Patil S, MacKay A et al. Baboon mesenchymal stem cells can be genetically modified to secrete human erythropoietin in vivo. Hum Gene Ther 2001:12:1527–1541.
- 66. Ioannou YA, Enriquez A, Benjamin C. Gene therapy for lysosomal storage disorders. Expert Opin Biol Ther 2003;3:789–801.
- 67. D'Azzo A. Gene transfer strategies for correction of lysosomal storage disorders. Acta Haematol 2003; 110:71–85.
- 68. Cheng SH, Smith AE. Gene therapy progress and prospects: gene therapy of lysosomal storage disorders. Gene Ther 2003;10:1275–1281.
- 69. Kim JV, Latouche JB, Riviere I et al. The ABCs of artificial antigen presentation. Nat Biotechnol 2004; 22:403–410.
- 70. Morris JC, Conerly M, Thomasson B et al. Induction of cytotoxic T-lymphocyte responses to enhanced green and yellow fluorescent proteins after myeloblative conditioning. Blood 2004;103:492–499.