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Abstract

tficient bioprocess characterization is essen-

tial for both regulatory compliance and

commercial viability of biologics. Traditional

approaches using resolution III/IV screening
designs followed by response surface methodology
are time-consuming, costly, and not always effective
in identifying the important experimental effects.
Definitive screening designs (DSDs) represent a
novel class of three-level screening designs that can
simultaneously evaluate main effects and quadratic
relationships. While DSDs are increasingly used in
bioprocess development, practical implementation
guidelines remain limited. This case study bridges
this gap by introducing a model-based framework
to identify critical process parameters (CPPs) and
optimize operating ranges for robust biologics pro-
duction using plasmid DNA (pDNA). Minimal 14-run
DSDs evaluated six input parameters and successfully
identified CPPs and optimal operating ranges. This
approach reduces experimental requirement by >50%
compared to traditional designs, providing an efficient
and economical strategy for bioprocess characteriza-
tion and optimization.

INTRODUCTION

Traditionally, a process is characterized by using a com-
bination of resolution III/IV screening designs and response
surface designs.!" This two-step process is time-consuming
and costly. Jones and Nachtscheim! developed definitive
screening designs (DSDs) that can allow factor screen-
ing, quadratic effects estimation, and two-way interaction
assessment in a single experiment. The advantages of these

designs are as follows:

1. Each experimental factor is assigned three levels, which
allows the estimation of quadratic effects to accommodate
curvature in the relationships between the experimental
factors and the responses.

2. The minimum number of runs is 2k+1, where k is the
number of factors and an additional centerpoint (CP) run is
added to estimate the model intercept term.

3. For k even, the main effects are orthogonal, and for k
odd, the main effects are nearly orthogonal and can be made
orthogonal by the addition of only two runs.” An orthogonal
design allows the effect of each factor to be assessed com-
pletely on its own, without any influence from the others.

4. The main effects are free of any aliasing, full or partial,
with quadratic effects and two-way interaction effects. This
means their estimates are not confounded with or indistin-
guishable from the effects of other factors.

5. No quadratic effect or two-way interaction effect is
completely aliased with another quadratic effect or two-way
interaction.

The DSDs are implemented in JMP statistical software.
Statistical models for the responses are fitted using JMP
and follow a two-stage model selection strategy to find a
model containing only the active effects.! Two commonly
used, modern measures of model performance are the
Akaike Information Criterion corrected (AICc) and Bayesian
Information Criterion (BIC).B! For both measures, smaller
values indicate a better prediction capability or performance.
The two-stage modeling strategy involves forward selec-
tion followed by all subsets regression using both AICc and
BIC statistics to determine a model that best predicts the
performance of the process. The method assumes heredity
and sparsity. Although it is unnecessary, DSDs are easily
augmented in cases where some ambiguity exists in the
identification of the significant effects. In these cases, the
degree of augmentation still results in fewer total runs than
would be necessary to complete a full response surface
design. In general, augmentation should not be necessary
unless an unusually large number of effects appear to be

OPEN ACCESS ARTICLE www.bioprocessingjournal.com



Breaking the DoE Bottleneck: How Definitive Screening Designs Enable Faster, Cheaper Biologics Process Development

significant indicating that the well-known Pareto Principle
is not holding. For this design, the model is selected
using the following steps:

1. Specity a full quadratic model and use the stepwise
platform.

2. Use forward selection with the minimum BIC or AICc
criterion to see how many effects might be important. These
models are also candidates for final models.

3. Use all possible models with the maximum model size
for a DSD set to a maximum value for which AICc can be
estimated.

4. Sort the all possible models report in ascending order
by AICc (or BIC) and turn the report into a data table.

5. Create an overlay plot of AICc and BIC by model size
(number).

6. Interpret the graph to select a candidate model size
or sizes.

7. Examine this set of models and select one or more of
them for further investigation.

While DSDs are increasingly used in bioprocess develop-
ment, practical implementation guidelines remain limited.
This study bridges this gap by demonstrating a structured
approach to model selection, critical process parameters
(CPPs) determination, and process optimization. The
approach is demonstrated through an Escherichia coli
(E. coli) fermentation case study for plasmid DNA (pDNA)
production, establishing a practical template for biologics
process development.

Plasmid DNA is used in gene therapy and vaccine studies.
As new gene therapies and DNA vaccines advance toward
regulatory approval, the optimization and characteriza-
tion of pDNA biomanufacturing is critical to the approval
process and economic viability of new therapeutics based
on pDNA. A risk-based assessment was used to identify
parameters for evaluation in this study. A comprehensive
list of fermentation input parameters was developed by a
thorough examination of the process flow diagram and a
review of historical process performance. The assessment
evaluated several considerations including each parameter’s
potential impact on process yield and robustness, and prod-
uct quality. Based on the assessment of the associated risk
levels, culture temperature (T), pH, glycerol feed rate (FR),
and the concentrations of calcium/magnesium (Ca/Mg),
trace metals (TMs), and thiamine in the batch medium were
identified to be potential critical parameters. Tejeda-Mansir
and Montesinos™ and Carnes and William also reported
that these parameters are the key factors that impact pDNA
yield and quality.

Statistical modeling of a physical system typically only
requires the inclusion of the first order (main effects), second
order (quadratic), and two-way interaction terms. In the
current experiment, the number of input factors was k=6,
and the full quadratic model contained six main effects, six
quadratic terms, 15 two-way interactions, and an intercept

for a total of 28 terms. Fortunately, the Pareto Principle
dictates that only a fraction of the total terms are likely to
be active. For any given experiment, the number of active
effects is likely to be only a small subset, typically 20-30%,
of the total number of potential effects. Without the Pareto
Principle, screening designs, and to some degree, DoEs, in
general have little chance of successfully characterizing a
physical system.[®

In this study, 14-run DSDs, including two CP runs, were
performed to provide a clear guideline for characterizing
and optimizing a biologics production process.

MATERIALS AND METHODS
Strain and pDNA

The E. coli host strain, DH5a (Thermo Fisher Scientific)
was used to propagate the pDP8.ape plasmid (PlasmidFactory)
in high cell density fermentation using the E. coli chemically
defined protein medium 1-based formulation (ECPM1), as
specified by Bernard and Payton.”? The pDP8.ape contains
the adenoviral helper genes AAV2 rep and AAV8 cap with
a vector size of 22.0 Kbp.

Shake Flask

Fifty mL of ECPM1 medium! was aliquoted into 0.250 L
baffled shake flasks and inoculated with 100 uL from seed
vials (0.2% v/v inoculum ratio). The shake flask was agitated
in a 1" throw incubator at 37°C for at least 15+ 1 hr, ensuring
ODsoo was 6 +4 absorbance units (AU). The culture was then
transferred into a sterile syringe in a biosafety cabinet prior
to inoculating fermenters.

Fermentation

DASGIP Bioblock fermenters (Eppendorf) were used to
carry out 14-run DSDs and 4-run confirmation fermenta-
tions. Each fermenter contained 0.6 L ECPM1 batch medium
supplemented with 1.0% (low), 1.2% (center), or 1.4% (high)
Ca/Mg, TM, and thiamine. It was inoculated with the appro-
priate volume of seed culture for an initial ODsgoo of 0.02 AU.
Batch-phase growth occurred for the first 7+ 2 hrs. Aeration
was initially set to 30 standard liters per hour (SLPH). The
pH was maintained at 6.7 (low), 7.0 (center), or 7.3 (high)
using NH,OH and H;PO,. The T was kept constant at 35°C
(low), 37°C (center), or 39°C (high). Dissolved oxygen (DO)
was controlled at 30 + 5% by an agitation/air flow/oxygen cas-
cade. A feed solution containing 50% w/w glycerol with 1.0%
yeast extract was initiated at a constant rate of 2.5 (low), 4.5
(center), or 6.5 (high) mL/h when a DO spike was observed.
Samples were collected at the end of the fermentation (22 +
0.5 hr post-feed initiation). The samples were stored at -80°C
prior to analysis. The total fermentation time was 30+ 1 hr.

Analytical Methods
Plasmid DNA was isolated by the QIAprep Spin Miniprep
kit (Qiagen) according to the manufacturer’s instructions.
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Plasmid DNA concentration was determined by UV
absorbance at 260 nm. Total pDNA concentration was deter-
mined by multiplying pDNA concentration with the final
fermenter volume.

RESULTS AND DISCUSSION

Definitive Screening Designs
Input and Output Data

The design matrix for the 14 runs and the resulting nor-
malized total pDNA titer (volume [L] x titer [g/L]) for the
DSDs are provided in Table 1. For confidentiality reasons,
each pDNA titer was normalized relative to the lowest titer
(run #13), yielding normalized titers ranging from 1.00 to
2.47 units. The design included two replicates of the central
point (CP) (runs#4 and #11) to determine the experimental
error. The normalized pDNA titer from the two CP runs
(2.24 and 1.69 units) were within the expected experimen-
tal error range of £0.5 normalized units. This variability is
inherent to the measurement process, which uses a Qiagen
kit for purification and titer analysis.

Model Selection for pDNA

The DSDs were analyzed using JMP version 18 statistical
software (SAS Institute Inc.). The model-fitting strategy
began by defining the full quadratic model, which in the
present experiment contained 28 experimental effects.
Forward selection using AICc and BIC fitting statistics was
used to determine the total number of effects that were likely
to be active. The maximum model size was set to ten and
specified that only five models (for each model size) should
be displayed in the output of the all possible models window
(Figure 1). The heredity restriction box was checked to restrict
models where interactions implied lower order effects. For
this case, ten was the largest model that could be specified
for AICc and BIC. Finally, an all possible models report was
generated, which was then sorted in ascending order by AICc
(Table 2) or BIC (Table 3) to determine which model had
the best prediction capability in terms of process behavior.

From the graph builder overlay plot (Figure 2), one can
conclude that the AICc model (with four to five terms) versus
the BIC model (with five to seven terms) revealed better pre-
dictive models based on their smaller values. For comparison

TABLE 1. Input and output parameters for DSDs.

(heredity restriction)

Input Parameters Output Parameters
LEGIC T FR Ca/Mg | TM |Thiamine | Normalized Total
PH | o) | mLm) | () | %) | (%) pDNA (unit)
1 6.7 35 2.5 1.4 1.2 1.4 1.08
2 6.7 | 39 4.5 1.4 1.0 1.0 2.38
3 7.0 35 2.5 1.0 1.0 1.0 1.04
4* 7.0 37 4.5 1.2 1.2 1.2 2.24
5 7.0 39 6.5 1.4 1.4 1.4 2.31
6 7.3 35 4.5 1.0 1.4 1.4 2.11
7 7.3 39 6.5 1.0 1.2 1.0 2.47
8 6.7 35 6.5 1.2 1.4 1.0 1.51
9 6.7 | 37 6.5 1.0 1.0 1.4 1.72
10 6.7 39 2.5 1.0 1.4 1.2 1.12
11* 7.0 37 4.5 1.2 1.2 1.2 1.69
12 7.3 35 6.5 1.4 1.0 1.2 1.18
13 7.3 37 2.5 1.4 1.4 1.0 1.00
14 7.3 39 2.5 1.2 1.0 1.4 1.07
* = centerpoints
All Possible Models
Maximum number of terms in a model: 10
Number of best models to see: 5

VI Restrict to models where interactions imply lower order effects

FIGURE 1. The JMP’s all possible models window.
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TABLE 2. Sorted models based on ascending AICc.

Model # Model Factor # in the Model R? RSME | AICc BIC
1 T, FR, TxFR, FRXFR 4 0.9162 0.1973 | 12.0988 3.9331
2 T, FR, TxT, TxFR, FRXFR 5 0.9357 0.1833 | 17.0642 | 2.8709
3 T, FR, FRxFR 3 0.7943 0.2933 | 18.1780 | 13.8733
4 T, FR, TM, TxFR, FRXFR 5 0.9266 0.1958 | 18.9065 4.7132
5 T, FR, Ca/Mg, TxFR, FRxFR 5 0.9225 0.2013 | 19.6854 5.4921
6 FR, FRxFR 2 0.6531 0.3632 | 20.4381 | 18.5499
7 T, FR, Thiamine, TXFR, FRXFR 5 0.9165 0.2089 | 20.7170 6.5237
8 pH, T, FR, TxFR, FRxFR 5 0.9162 0.2092 | 20.7638 6.5706
9 T, FR, TxT, FRXFR 4 0.8137 0.2942 | 23.2868 | 15.1211
10 T, FR, TM, FRxFR 4 0.8047 0.3013 | 23.9506 | 15.7849
T =temperature Ca/Mg = calcium and magnesium concentration in batch medium
FR=glycerol feed rate  TM =trace metal concentration in batch medium
TABLE 3. Sorted models based on ascending BIC.

Model # Model Factor # in the Model R? RSME AlCc BIC
1 T, FR, TM, TxT, TXFR, FRxFR, TxTM 7 0.9565 0.1741 41.9266 | 2.6781
2 T, FR, TxT, TxFR, FRXFR 5 0.9357 0.1833 17.0642 | 2.8709
3 T, FR, TM, TxT, TxFR, FRxFR 6 0.9461 0.1794 | 26.7236 3.0361
4 T, FR, Ca/Mg, TM, TxT, TxFR, FRxFR, TxTM 8 0.9627 0.1766 70.1002 3.1574
5 T, FR, Ca/Mg, TM, TxT, TxFR, FRxFR, FRxCa/Mg 8 0.9611 0.1803 70.6771 3.7344
6 T, FR, TxFR, FRxFR 4 0.9162 0.1973 12.0988 3.9331
7 T, FR, Ca/Mg, TM, TxT, TxFR,FRxFR 7 0.9523 0.1823 | 43.2069 | 3.9584
8 T, FR, Ca/Mg, TxT, TxFR, FRxFR 6 0.9419 0.1863 27.7735 4.0859
9 T, FR, TM,TxFR, FRXFR, TxTM 6 0.9415 0.1870 27.8786 4.1910

10 T, FR, Ca/Mg, TxT, TxFR, FRxFR, FRxCa/Mg 7 0.9507 0.1853 | 43.6688 | 4.4203

T =temperature Ca/Mg = calcium and magnesium concentration in batch medium
FR=glycerol feed rate  TM =trace metal concentration in batch medium

300 -

200

AlCc

100 -

308

BIC

S N S |
2 4 6 8 10

Number of Factors

FIGURE 2. AICc and BIC vs. number of factors (k). AICc and BIC indicate models in the
range of four to five terms, and five to seven factors are the best predictive models, respectively.
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purposes, AICc models: #1 (with k=4 factors); #2 (with k=5
factors); and #3 (with k=3 factors) were selected based on
their smaller AICc values, and BICc model #1 (with k=7
factors), shown in Table 3 were identified as having the
smallest BIC and root mean square error (RMSE).

Model Analysis

The fit model report (Table 4) provides details for the
k=4, k=5, and k=3 AICc, and k=7 BIC effects models.
The R? statistic indicated that all models fit the data well.
Analysis of variance (anova) results demonstrated that the
models were significant (p-value <0.05). The lack of fit test
indicated that all AICc and BIC models adequately fit the
data as p-value >0.05.

The parameter estimates of four models were compared
in Table 5. All four models agreed on the important effects.
FR and T were statistically more significant than the other
parameters.

Confirmation Run

Four confirmation runs, including one CP condition
(run#4), were performed to determine the best model among
the four models selected. The input and output parameters
are shown in Table 6. The mean and standard deviation of
the residuals from the four model predictions are summa-
rized in Table 7. Overall, the four-effects AICc model (model
#1 with k=4) exhibited the smallest estimated mean bias and

was selected as the best predictive model. Note that with the
addition of run#4, a total of three CP runs were available to
examine any experimental error.

Prediction Profiler and
Assessing Process Capability

The four-effects AICc model indicates that T, FR and
its squared term, and FR and T interaction are statistically

TABLE 4. Statistical analysis.

AICc BIC
Model # 1 2 3 1
Factor # in the model k=4 k=5 k=3 k=7
Summary of Fit
R2 0.9162 0.9357 0.7943 0.9565
R? adjusted 0.8790 0.8955 0.7326 0.9057
RMSE 0.1973 0.1833 0.2933 0.1741
Mean of response 1.6371 | 1.6371 | 1.6371 1.6371
Observations 14 14 14 14
Anova for pPDNA
Prob >F | <0.0001 | 0.0001 | 0.0009 | 0.0011
Lack of fit test for pDNA
Prob >F | 06057 | 07815 | 01337 | 09958

TABLE 5. Sorted parameter estimate.

Prob > ¢
Parameters
AICc, Model #1, k=4 AICc, Model #2, k=5 AICc, Model #3, k=3 BIC, Model #1, k=7

FR 0.0002 0.0002 0.0019 0.0004
FRxFR 0.0003 0.0003 0.0036 0.0018
T 0.0036 0.0030 0.0256 0.0045
TxFR 0.0056 0.0046 N/A 0.0052
TxT N/A 0.1583 N/A 0.2001
™ N/A N/A N/A 0.2759
TxTM N/A N/A N/A 0.2765

T =temperature TM =trace metal concentration in batch medium

FR=glycerol feed rate  N/A =model does not incorporate this parameter

TABLE 6. Confirmation run input and output parameters.

Input Parameters Output Parameters
LU0, L Normalized Total
pH | T(°C) | FR(mL/h) | Ca/Mg (%) | TM (%) | Thiamine (%) pDNA (unit)
1 6.7 37 4.5 1.0 1.0 1.0 1.77
2 7.3 39 6.5 1.4 1.4 1.4 2.81
3 7.0 38 4.5 1.2 1.2 1.2 2.32
4 7.0 37 4.5 1.2 1.2 1.2 1.88
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TABLE 7. Summary statistics for

confirmation run residuals.

AlICc BIC
Model # 1 2 3 1
Factor # in the model k=4 k=5 k=3 k=7
Mean 0.0025 0.0489 0.0656 0.0875
Standard deviation 0.3645 0.3074 0.4781 0.2672
Standard error mean 0.1823 0.1537 0.2391 0.1336
Upper 95% mean 0.5825 0.5380 0.8264 0.5127
Lower 95% mean -0.5775 | -0.4401 | -0.6952 | -0.3377
N (# of runs) 4 4 4 4
N missing 0 0 0 0

significant. Prediction profiler (Figure 3) shows that T has
a strong positive correlation with pDNA titer. FR appears as
an important factor through its quadratic effect. The optimal
settings of the profiler in Figure 3 suggest that fermentation
with the T of 39°C and FR of 5.5mL/h provides the highest
normalized total pDNA titer of 2.5 units.

Using the pDNA predictive model from the four-effects
AICc model and the simulator in the JMP prediction pro-
tiler, the sensitivity of the pDNA response to variation in

<
2 2.5 :
(] ] 7
Q -
E 2.105 24
'g [1.881846,
o 2.328154] 1.5
(] 1 '
N :
© 1+ :
£ T T T
= n © N~ o O
2
37 Feed rate
T (mL/hr)
Random Random
Normal Normal
Mean 37 Mean 45
SD 1 SD 0.9

FIGURE 3. Prediction profiler and simulation at
centerpoint setting for a four-effects AICc model.

the T and FR was examined. T and FR, with the standard
deviation of 1°C and 0.9 mL/h, respectively, were assessed.
Using the results of the simulation, a 95%-95% tolerance
interval (TI) was estimated using the distribution platform.
The TI indicates, with 95% confidence, that at least 95% of
the batches will have a normalized total pDNA titer in the
range of 1.4-2.6 units at the CP settings for the selected
process factors (Figure 4).

Histogram Quantiles Summary Statistics
o 100.0% 2.8110033 Mean 1.9651505
99.5% Maximum 2.5225862 (Siiavtilglgéi 0.2955764
97.5% 2.3997444
90.0% 2.2668561 Ss‘gr‘l;rjan 0.0029558
75.0% Quartile 2.1511796 Upper 95% 1.9709444
50.0% Median 2.0130523 mean
25.0% 1.8505382 Lower 95% 1.9593566
100% | e | 16038229 zizz o T o000
[N 2.5% 1.1886235 N missing ’O
0.5% 0.6993580
: 0.0% | Minimum | -0.6818680
[ ]
Normalized Total pDNA Tolerance Intervals (T1Is)
Proportion | Lower TI | Upper TI | 1-Alpha
0.950 1.378978 2.551323 0.950

FIGURE 4. T1Is for a four-effects AICc model.
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CONCLUSIONS

This study provides a step-by-step framework for imple-
menting DSDs to select accurate predictive models, identify
CPPs, and define robust operating ranges. Using pDNA
production in E. coli fermentation as a case study, we demon-
strated how to:

« evaluate model fit (selecting a four-effects model as optimal
based on AICc),

o statistically confirm that T and FR are CPPs (p-value
<0.05), and

« establish a design space defined by a 95% TI of 1.4-2.6

units at 37+1°C and a FR of 4.5+0.9mL/h.

Compared to traditional two-stage DoE (screening +
response surface method), which requires 30-50 experi-
ments to characterize a single unit operation with six factors,
our approach achieves the same objectives with just 14-run
DSDs—reducing the experimental workload by >50%.

By providing clear guidelines for model selection,
CPP determination, and design space optimization, this
work demonstrates that DSDs represent an efficient and
cost-effective approach for bioprocess characterization, par-
ticularly for multi-parameter optimization.

Author Disclosures: No competing financial interests exist.
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