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Abstract

Efficient bioprocess characterization is essen-
tial for both regulatory compliance and 
commercial viability of biologics. Traditional 
approaches using resolution III/IV screening 

designs followed by response surface methodology 
are time-consuming, costly, and not always effective 
in identifying the important experimental effects. 
Definitive screening designs (DSDs) represent a 
novel class of three-level screening designs that can 
simultaneously evaluate main effects and quadratic 
relationships. While DSDs are increasingly used in 
bioprocess development, practical implementation 
guidelines remain limited. This case study bridges 
this gap by introducing a model-based framework 
to identify critical process parameters (CPPs) and 
optimize operating ranges for robust biologics pro-
duction using plasmid DNA (pDNA). Minimal 14-run 
DSDs evaluated six input parameters and successfully 
identified CPPs and optimal operating ranges. This 
approach reduces experimental requirement by >50% 
compared to traditional designs, providing an efficient 
and economical strategy for bioprocess characteriza-
tion and optimization.

Breaking the DoE Bottleneck: 
How Definitive Screening Designs Enable Faster, 

Cheaper Biologics Process Development

INTRODUCTION
Traditionally, a process is characterized by using a com-

bination of resolution III/IV screening designs and response 
surface designs.[1] This two-step process is time-consuming 
and costly. Jones and Nachtscheim[1] developed definitive 
screening designs (DSDs) that can allow factor screen-
ing, quadratic effects estimation, and two-way interaction 
assessment in a single experiment. The advantages of these 
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designs are as follows:
1.  Each experimental factor is assigned three levels, which 

allows the estimation of quadratic effects to accommodate 
curvature in the relationships between the experimental 
factors and the responses.

2.  The minimum number of runs is 2k+1, where k is the 
number of factors and an additional centerpoint (CP) run is 
added to estimate the model intercept term.

3.  For k even, the main effects are orthogonal, and for k 
odd, the main effects are nearly orthogonal and can be made 
orthogonal by the addition of only two runs.[2] An orthogonal 
design allows the effect of each factor to be assessed com-
pletely on its own, without any influence from the others. 

4.  The main effects are free of any aliasing, full or partial, 
with quadratic effects and two-way interaction effects. This 
means their estimates are not confounded with or indistin-
guishable from the effects of other factors.

5.  No quadratic effect or two-way interaction effect is 
completely aliased with another quadratic effect or two-way 
interaction.

The DSDs are implemented in JMP statistical software. 
Statistical models for the responses are fitted using JMP 
and follow a two-stage model selection strategy to find a 
model containing only the active effects.[1] Two commonly 
used, modern measures of model performance are the 
Akaike Information Criterion corrected (AICc) and Bayesian 
Information Criterion (BIC).[3] For both measures, smaller 
values indicate a better prediction capability or performance. 
The two-stage modeling strategy involves forward selec-
tion followed by all subsets regression using both AICc and 
BIC statistics to determine a model that best predicts the 
performance of the process. The method assumes heredity 
and sparsity. Although it is unnecessary, DSDs are easily 
augmented in cases where some ambiguity exists in the 
identification of the significant effects. In these cases, the 
degree of augmentation still results in fewer total runs than 
would be necessary to complete a full response surface 
design. In general, augmentation should not be necessary 
unless an unusually large number of effects appear to be 
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significant indicating that the well-known Pareto Principle 
is not holding. For this design, the model is selected 
using the following steps: 

1.  Specify a full quadratic model and use the stepwise 
platform. 

2.  Use forward selection with the minimum BIC or AICc 
criterion to see how many effects might be important. These 
models are also candidates for final models. 

3.  Use all possible models with the maximum model size 
for a DSD set to a maximum value for which AICc can be 
estimated. 

4.  Sort the all possible models report in ascending order 
by AICc (or BIC) and turn the report into a data table. 

5.  Create an overlay plot of AICc and BIC by model size 
(number). 

6.  Interpret the graph to select a candidate model size 
or sizes. 

7.  Examine this set of models and select one or more of 
them for further investigation.

While DSDs are increasingly used in bioprocess develop-
ment, practical implementation guidelines remain limited. 
This study bridges this gap by demonstrating a structured 
approach to model selection, critical process parameters 
(CPPs) determination, and process optimization. The 
approach is demonstrated through an Escherichia coli 
(E. coli) fermentation case study for plasmid DNA (pDNA) 
production, establishing a practical template for biologics 
process development. 

Plasmid DNA is used in gene therapy and vaccine studies. 
As new gene therapies and DNA vaccines advance toward 
regulatory approval, the optimization and characteriza-
tion of pDNA biomanufacturing is critical to the approval 
process and economic viability of new therapeutics based 
on pDNA. A risk-based assessment was used to identify 
parameters for evaluation in this study. A comprehensive 
list of fermentation input parameters was developed by a 
thorough examination of the process f low diagram and a 
review of historical process performance. The assessment 
evaluated several considerations including each parameter’s 
potential impact on process yield and robustness, and prod-
uct quality. Based on the assessment of the associated risk 
levels, culture temperature (T), pH, glycerol feed rate (FR), 
and the concentrations of calcium/magnesium (Ca/Mg), 
trace metals (TMs), and thiamine in the batch medium were 
identified to be potential critical parameters. Tejeda-Mansir 
and Montesinos[4] and Carnes and William[5] also reported 
that these parameters are the key factors that impact pDNA 
yield and quality. 

Statistical modeling of a physical system typically only 
requires the inclusion of the first order (main effects), second 
order (quadratic), and two-way interaction terms. In the 
current experiment, the number of input factors was k = 6, 
and the full quadratic model contained six main effects, six 
quadratic terms, 15 two-way interactions, and an intercept 

for a total of 28 terms. Fortunately, the Pareto Principle 
dictates that only a fraction of the total terms are likely to 
be active. For any given experiment, the number of active 
effects is likely to be only a small subset, typically 20–30%, 
of the total number of potential effects. Without the Pareto 
Principle, screening designs, and to some degree, DoEs, in 
general have little chance of successfully characterizing a 
physical system.[6] 

In this study, 14-run DSDs, including two CP runs, were 
performed to provide a clear guideline for characterizing 
and optimizing a biologics production process.

MATERIALS AND METHODS
Strain and pDNA

The E. coli host strain, DH5α (Thermo Fisher Scientific) 
was used to propagate the pDP8.ape plasmid (PlasmidFactory)
in high cell density fermentation using the E. coli chemically 
defined protein medium 1-based formulation (ECPM1), as 
specified by Bernard and Payton.[7] The pDP8.ape contains 
the adenoviral helper genes AAV2 rep and AAV8 cap with 
a vector size of 22.0 Kbp.

Shake Flask 
Fifty mL of ECPM1 medium[7] was aliquoted into 0.250 L 

baffled shake flasks and inoculated with 100 µL from seed 
vials (0.2% v/v inoculum ratio). The shake flask was agitated 
in a 1" throw incubator at 37°C for at least 15 ± 1 hr, ensuring 
OD600 was 6 ± 4 absorbance units (AU). The culture was then 
transferred into a sterile syringe in a biosafety cabinet prior 
to inoculating fermenters. 

 
Fermentation 

DASGIP Bioblock fermenters (Eppendorf) were used to 
carry out 14-run DSDs and 4-run confirmation fermenta-
tions. Each fermenter contained 0.6 L ECPM1 batch medium 
supplemented with 1.0% (low), 1.2% (center), or 1.4% (high) 
Ca/Mg, TM, and thiamine. It was inoculated with the appro-
priate volume of seed culture for an initial OD600 of 0.02 AU. 
Batch-phase growth occurred for the first 7 ± 2 hrs. Aeration 
was initially set to 30 standard liters per hour (SLPH). The 
pH was maintained at 6.7 (low), 7.0 (center), or 7.3 (high) 
using NH4OH and H3PO4. The T was kept constant at 35°C 
(low), 37°C (center), or 39°C (high). Dissolved oxygen (DO) 
was controlled at 30 ± 5% by an agitation/air flow/oxygen cas-
cade. A feed solution containing 50% w/w glycerol with 1.0% 
yeast extract was initiated at a constant rate of 2.5 (low), 4.5 
(center), or 6.5 (high) mL/h when a DO spike was observed. 
Samples were collected at the end of the fermentation (22 ±  
0.5 hr post-feed initiation). The samples were stored at -80°C 
prior to analysis. The total fermentation time was 30 ± 1 hr. 

Analytical Methods 
Plasmid DNA was isolated by the QIAprep Spin Miniprep 

kit (Qiagen) according to the manufacturer’s instructions. 
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Plasmid DNA concentration was determined by UV 
absorbance at 260 nm. Total pDNA concentration was deter-
mined by multiplying pDNA concentration with the final 
fermenter volume. 

RESULTS AND DISCUSSION

Definitive Screening Designs  
Input and Output Data 

The design matrix for the 14 runs and the resulting nor-
malized total pDNA titer (volume [L] × titer [g/L]) for the 
DSDs are provided in Table 1. For confidentiality reasons, 
each pDNA titer was normalized relative to the lowest titer 
(run #13), yielding normalized titers ranging from 1.00 to 
2.47 units. The design included two replicates of the central 
point (CP) (runs #4 and #11) to determine the experimental 
error. The normalized pDNA titer from the two CP runs 
(2.24 and 1.69 units) were within the expected experimen-
tal error range of ±0.5 normalized units. This variability is 
inherent to the measurement process, which uses a Qiagen 
kit for purification and titer analysis. 

Model Selection for pDNA 
The DSDs were analyzed using JMP version 18 statistical 

software (SAS Institute Inc.). The model-fitting strategy 
began by defining the full quadratic model, which in the 
present experiment contained 28 experimental effects. 
Forward selection using AICc and BIC fitting statistics was 
used to determine the total number of effects that were likely 
to be active. The maximum model size was set to ten and 
specified that only five models (for each model size) should 
be displayed in the output of the all possible models window 
(Figure 1). The heredity restriction box was checked to restrict 
models where interactions implied lower order effects. For 
this case, ten was the largest model that could be specified 
for AICc and BIC. Finally, an all possible models report was 
generated, which was then sorted in ascending order by AICc 
(Table 2) or BIC (Table 3) to determine which model had 
the best prediction capability in terms of process behavior. 

From the graph builder overlay plot (Figure 2), one can 
conclude that the AICc model (with four to five terms) versus 
the BIC model (with five to seven terms) revealed better pre-
dictive models based on their smaller values. For comparison 

All Possible Models
Maximum number of terms in a model:	 10
Number of best models to see:		   5
 	Restrict to models where interactions imply lower order effects 
(heredity restriction)

FIGURE 1. The JMP’s all possible models window.

TABLE 1. Input and output parameters for DSDs.

Run #
Input Parameters Output Parameters

pH T 
(°C)

FR 
(mL/h)

Ca/Mg 
(%)

TM 
(%)

Thiamine 
(%)

Normalized Total 
pDNA (unit)

1* 6.7 35 2.5 1.4 1.2 1.4 1.08
2* 6.7 39 4.5 1.4 1.0 1.0 2.38
3* 7.0 35 2.5 1.0 1.0 1.0 1.04
4* 7.0 37 4.5 1.2 1.2 1.2 2.24
5* 7.0 39 6.5 1.4 1.4 1.4 2.31
6* 7.3 35 4.5 1.0 1.4 1.4 2.11
7* 7.3 39 6.5 1.0 1.2 1.0 2.47
8* 6.7 35 6.5 1.2 1.4 1.0 1.51
9* 6.7 37 6.5 1.0 1.0 1.4 1.72
10* 6.7 39 2.5 1.0 1.4 1.2 1.12
11* 7.0 37 4.5 1.2 1.2 1.2 1.69
12* 7.3 35 6.5 1.4 1.0 1.2 1.18
13* 7.3 37 2.5 1.4 1.4 1.0 1.00
14* 7.3 39 2.5 1.2 1.0 1.4 1.07

* = centerpoints
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TABLE 3. Sorted models based on ascending BIC.

Model # Model Factor # in the Model R2 RSME AICc BIC
1 T, FR, TM, T×T, T×FR, FR×FR, T×TM 7 0.9565 0.1741 41.9266 2.6781
2 T, FR, T×T, T×FR, FR×FR 5 0.9357 0.1833 17.0642 2.8709
3 T, FR, TM, T×T, T×FR, FR×FR 6 0.9461 0.1794 26.7236 3.0361
4 T, FR, Ca/Mg, TM, T×T, T×FR, FR×FR, T×TM 8 0.9627 0.1766 70.1002 3.1574
5 T, FR, Ca/Mg, TM, T×T, T×FR, FR×FR, FR×Ca/Mg 8 0.9611 0.1803 70.6771 3.7344
6 T, FR, T×FR, FR×FR 4 0.9162 0.1973 12.0988 3.9331
7 T, FR, Ca/Mg, TM, T×T, T×FR,FR×FR 7 0.9523 0.1823 43.2069 3.9584
8 T, FR, Ca/Mg, T×T, T×FR, FR×FR 6 0.9419 0.1863 27.7735 4.0859
9 T, FR, TM,T×FR, FR×FR, T×TM 6 0.9415 0.1870 27.8786 4.1910
10 T, FR, Ca/Mg, T×T, T×FR, FR×FR, FR×Ca/Mg 7 0.9507 0.1853 43.6688 4.4203

TABLE 2. Sorted models based on ascending AICc.

Model # Model Factor # in the Model R2 RSME AICc BIC
1 T, FR, T×FR, FR×FR 4 0.9162 0.1973 12.0988 3.9331
2 T, FR, T×T, T×FR, FR×FR 5 0.9357 0.1833 17.0642 2.8709
3 T, FR, FR×FR 3 0.7943 0.2933 18.1780 13.8733
4 T, FR, TM, T×FR, FR×FR 5 0.9266 0.1958 18.9065 4.7132
5 T, FR, Ca/Mg, T×FR, FR×FR 5 0.9225 0.2013 19.6854 5.4921
6 FR, FR×FR 2 0.6531 0.3632 20.4381 18.5499
7 T, FR, Thiamine, T×FR, FR×FR 5 0.9165 0.2089 20.7170 6.5237
8 pH, T, FR, T×FR, FR×FR 5 0.9162 0.2092 20.7638 6.5706
9 T, FR, T×T, FR×FR 4 0.8137 0.2942 23.2868 15.1211
10 T, FR, TM, FR×FR 4 0.8047 0.3013 23.9506 15.7849

T = temperature
FR = glycerol feed rate

Ca/Mg = calcium and magnesium concentration in batch medium
TM = trace metal concentration in batch medium

T = temperature
FR = glycerol feed rate

Ca/Mg = calcium and magnesium concentration in batch medium
TM = trace metal concentration in batch medium
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FIGURE 2. AICc and BIC vs. number of factors (k). AICc and BIC indicate models in the 
range of four to five terms, and five to seven factors are the best predictive models, respectively.
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TABLE 6. Confirmation run input and output parameters.

Run #
Input Parameters Output Parameters

pH T (°C) FR (mL/h) Ca/Mg (%) TM (%) Thiamine (%) Normalized Total 
pDNA (unit)

1 6.7 37 4.5 1.0 1.0 1.0 1.77
2 7.3 39 6.5 1.4 1.4 1.4 2.81
3 7.0 38 4.5 1.2 1.2 1.2 2.32
4 7.0 37 4.5 1.2 1.2 1.2 1.88

TABLE 5. Sorted parameter estimate.

Parameters
Prob > |t|

AICc, Model #1, k = 4 AICc, Model #2, k = 5 AICc, Model #3, k = 3 BIC, Model #1, k = 7

FR 0.0002 0.0002 0.0019 0.0004

FR × FR 0.0003 0.0003 0.0036 0.0018

T 0.0036 0.0030 0.0256 0.0045

T × FR 0.0056 0.0046 N/A 0.0052

T × T N/A 0.1583 N/A 0.2001

TM N/A N/A N/A 0.2759

T × TM N/A N/A N/A 0.2765

T = temperature
FR = glycerol feed rate

TM = trace metal concentration in batch medium
N/A = model does not incorporate this parameter

purposes, AICc models: #1 (with k = 4 factors); #2 (with k = 5 
factors); and #3 (with k = 3 factors) were selected based on 
their smaller AICc values, and BICc model #1 (with k = 7 
factors), shown in Table 3 were identified as having the 
smallest BIC and root mean square error (RMSE).

Model Analysis 
The fit model report (Table 4) provides details for the 

k = 4, k = 5, and k = 3 AICc, and k = 7 BIC effects models. 
The R2 statistic indicated that all models fit the data well. 
Analysis of variance (anova) results demonstrated that the 
models were significant (p-value <0.05). The lack of fit test 
indicated that all AICc and BIC models adequately fit the 
data as p-value >0.05.

The parameter estimates of four models were compared 
in Table 5. All four models agreed on the important effects. 
FR and T were statistically more significant than the other 
parameters.

Confirmation Run 
Four confirmation runs, including one CP condition 

(run #4), were performed to determine the best model among 
the four models selected. The input and output parameters 
are shown in Table 6. The mean and standard deviation of 
the residuals from the four model predictions are summa-
rized in Table 7. Overall, the four-effects AICc model (model 
#1 with k = 4) exhibited the smallest estimated mean bias and 

TABLE 4. Statistical analysis.

AICc BIC

Model # 1 2 3 1

Factor # in the model k = 4 k = 5 k = 3 k = 7

Summary of Fit
R2 0.9162 0.9357 0.7943 0.9565

R2 adjusted 0.8790 0.8955 0.7326 0.9057

RMSE 0.1973 0.1833 0.2933 0.1741

Mean of response 1.6371 1.6371 1.6371 1.6371

Observations 14 14 14 14

Anova for pDNA
Prob >F <0.0001 0.0001 0.0009 0.0011

Lack of fit test for pDNA
Prob >F 0.6057 0.7815 0.1337 0.9958

was selected as the best predictive model. Note that with the 
addition of run #4, a total of three CP runs were available to 
examine any experimental error.

Prediction Profiler and  
Assessing Process Capability 

The four-effects AICc model indicates that T, FR and 
its squared term, and FR and T interaction are statistically 
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significant. Prediction profiler (Figure 3) shows that T has 
a strong positive correlation with pDNA titer. FR appears as 
an important factor through its quadratic effect. The optimal 
settings of the profiler in Figure 3 suggest that fermentation 
with the T of 39°C and FR of 5.5 mL/h provides the highest 
normalized total pDNA titer of 2.5 units.

Using the pDNA predictive model from the four-effects 
AICc model and the simulator in the JMP prediction pro-
filer, the sensitivity of the pDNA response to variation in 

the T and FR was examined. T and FR, with the standard 
deviation of 1°C and 0.9 mL/h, respectively, were assessed. 
Using the results of the simulation, a 95%–95% tolerance 
interval (TI) was estimated using the distribution platform. 
The TI indicates, with 95% confidence, that at least 95% of 
the batches will have a normalized total pDNA titer in the 
range of 1.4–2.6 units at the CP settings for the selected 
process factors (Figure 4).

TABLE 7. Summary statistics for 
confirmation run residuals.

AICc BIC

Model # 1 2 3 1

Factor # in the model k = 4 k = 5 k = 3 k = 7

Mean 0.0025 0.0489 0.0656 0.0875

Standard deviation 0.3645 0.3074 0.4781 0.2672

Standard error mean 0.1823 0.1537 0.2391 0.1336

Upper 95% mean 0.5825 0.5380 0.8264 0.5127

Lower 95% mean -0.5775 -0.4401 -0.6952 -0.3377

N (# of runs) 4 4 4 4

N missing 0 0 0 0

FIGURE 3. Prediction profiler and simulation at  
centerpoint setting for a four-effects AICc model.
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FIGURE 4. TIs for a four-effects AICc model.

Histogram Quantiles Summary Statistics

Tolerance Intervals (TIs)

100.0%

Maximum

2.8110033

99.5% 2.5225862

97.5% 2.3997444

90.0% 2.2668561

75.0% Quartile 2.1511796

50.0% Median 2.0130523

25.0%

Quartile

1.8505382

10.0% 1.6038229

2.5% 1.1886235

0.5% 0.6993580

0.0% Minimum -0.6818680

Mean 1.9651505

Standard 
deviation

0.2955764

Standard 
error mean

0.0029558

Upper 95% 
mean

1.9709444

Lower 95% 
mean

1.9593566

N (# of runs) 10,000

N missing 0

Proportion Lower TI Upper TI 1-Alpha

0.950 1.378978 2.551323 0.950

Normalized Total pDNA
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This study provides a step-by-step framework for imple-
menting DSDs to select accurate predictive models, identify 
CPPs, and define robust operating ranges. Using pDNA 
production in E. coli fermentation as a case study, we demon-
strated how to:

•   evaluate model fit (selecting a four-effects model as optimal 
based on AICc),

•   statistically confirm that T and FR are CPPs (p-value 
<0.05), and

•  establish a design space defined by a 95% TI of 1.4–2.6 

units at 37 ± 1°C and a FR of 4.5 ± 0.9 mL/h. 
Compared to traditional two-stage DoE (screening + 

response surface method), which requires 30–50 experi-
ments to characterize a single unit operation with six factors, 
our approach achieves the same objectives with just 14-run 
DSDs—reducing the experimental workload by >50%.

By providing clear guidelines for model selection, 
CPP determination, and design space optimization, this 
work demonstrates that DSDs represent an efficient and 
cost-effective approach for bioprocess characterization, par-
ticularly for multi-parameter optimization.
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