
BioProcessing Journal

Advances & Trends In Biological Product Development

CONFERENCE EXCLUSIVE

Structure Characterization of a Recombinant Monoclonal Antibody with One- and Two-Dimensional High Performance Liquid Chromatography with On-line Electrospray Ionization Mass Spectrometry

BY BROOKS R. SUNDAY

ecombinant monoclonal antibodies (rMAbs) are the predominant biotherapeutic protein under development today.1 FDA requires the structure characterization of rMAbs and other recombinant proteins to grant marketing approval.^{2,3} Characterizing such complex, inherently heterogeneous molecules is a significant analytical challenge that requires a broad array of physico-chemical tests. This article reports the use of reversed phase high-performance liquid chromatography (RP-HPLC) with on-line electrospray ionization mass spectrometry (ESI-MS) to rapidly determine the glycoform composition and the heavy chain C-terminal lysine heterogeneity of an intact rMAb. In addition, a novel multidimensional chromatographic platform was developed to investigate the two-dimensional, size exclusion chromatography (HPSEC) separation of the rMAb followed by RP-HPLC (HPSEC-RP-HPLC) with on-line ESI-MS analysis. Such analyses can characterize, identify, and confirm the structure of an intact rMAb.

Recombinant MAbs are complex compounds with a high average molecular weight of ca. 150 kDa, and consist of

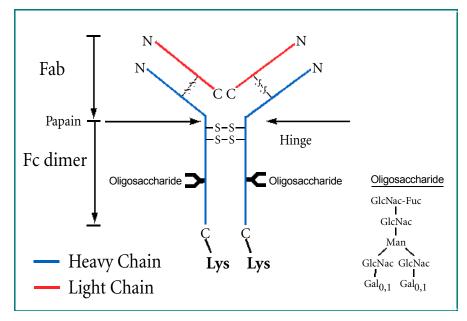


Figure 1.The basic heterodimeric structure of an IgG4 MAb shows the light chains (red), the heavy chains (blue), the site of papain cleavage at the disulfide bridge, and the oligosaccharide microheterogeneity at asparagine 297. The heavy chain may terminate with or without lysine and the asialylated biantennary oligosaccharide chains may terminate with and without galactose (Gal).

two heterodimeric disulfide-linked light and heavy chains connected through inter-chain disulfide bridges.⁴ They are subject to heavy chain post-translational modifications such as proteolytic clipping of the C-terminal lysine, dehydration of the N-terminal glutamic acid residue, and incomplete oligosaccharide expression.⁵ The oligosaccharide structure consists of an asialylated, biantennary, core fucosylated oligosaccharide

terminating with galactose on asparagine of the heavy chain.^{6,7} A heterogeneous population of oligosaccharides arises from the presence or absence of galactose residues at the oligosaccharide termini to form three distinct glycoforms: Go (agalacto), G1 (monogalacto), and G2 (digalacto) — 0, 1, or 2 galactose residues, respectively. The C-terminal heavy chain lysine heterogeneity and the oligosaccharide microheterogeneity combine to

Brooks R. Sunday (brooks.sunday@spcorp.com) is associate principal scientist in the bioanalytical/biotechnology development department at Schering-Plough Research Institute, Union, NJ.

form unique mass isoforms that can be differentiated by mass spectrometry (Fig. 1). The rMAb's glycoform composition may affect its biological activity. 6–12

Biomolecular mass analysis with mass spectrometry is essential to the structure characterization of rMAb biotherapeutics. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and ESI-MS have been used to elucidate the structure of recombinant DNA-derived biotherapeutics.^{13–16} However, the high molecular weight, complex structure, and large number of potential mass isoforms present significant challenges to the mass spectrometric analysis of rMAbs. Therefore, to determine rMAbs' structure through mass analysis, they are typically converted to smaller fragments such as heavy chain, Fc, Fc/2 fragments, and peptides. 17–30

Although MALDI-TOF MS lacks sufficient resolution to identify the intact rMAb glycoform profile, it can report the average molecular mass (M_r).^{17–19,31} Early ESI-MS analyses of intact rMAbs by infusion and RP-HPLC-ESI-MS also reported the average M_r. 18-21,32 However, like MALDI-TOF MS, the resolution and/or limited mass range of the mass spectrometer prevented determination of the glycoform profile. Subsequently, the glycoform profiles of intact rMAbs were analyzed via infusion and flow injection analysis.^{17,31} Infusion of an intact rMAb has been reported as a quality control release test in which five glycoforms were detected following treatment with carboxypeptidase B to remove C-terminal lysine heterogeneity.³³ early ESI-TOF mass analysis also reported

an average M_r of an intact rMAb with a mass accuracy of ± 100 Da without glycoform characterization while a more recent ESI-TOF study determined glycoform heterogeneity. 34,35

Multidimensional chromatography (MDC) is generally defined for HPLC as the automated separation of complex compounds using sequential and orthogonal modes of chromatography designed to achieve efficient separations. Samain reviewed early MDC applications in biotechnology that included two-dimensional HPSEC-RP-HPLC separations. Numerous reviews of MDC have since been published. The two-dimensional separation and analysis of an intact rMAb with HPSEC followed by immunoaffinity separation has also been reported. 44

We report the application of an online RP-HPLC-ESI-MS method that can be used as a one dimensional method or combined with HPSEC in a two-dimensional separation for the analysis and structure characterization of an intact rMAb. The RP-HPLC-ESI-MS methods can be applied to compare experimental lots of the rMAb from different cell culture and purification processes, to confirm identity, and to determine lot-to-lot consistency.

Tools & Techniques

Mass Spectrometry

A Perkin-Elmer SCIEX API 165 single quadrupole ESI-MS (Concord, Ontario, Canada) was used for mass analysis. The mass scan range was 30–3,000 Da. The mass spectrometer was initially equipped with an Ion SprayTM source. Subsequently, a Turbo Ion SprayTM source

was installed to increase sensitivity by using heated nitrogen nebulizer gas to increase ion formation and the number of ions entering the mass analyzer.

The mass spectrometer was tuned for maximum mass-to-charge (m/z) resolution using the manufacturer's polypropylene glycol (PPG) standard kit before analysis of the rMAb. Mass analysis was performed in the positive ion mode. The ESI-MS source and Qo RF quadrupole filter were cleaned regularly to ensure optimal m/z signal intensity and accuracy. The step size was 0.2 amu and the dwell time was 1.0 m/second for all analyses reported.

The Ion Spray mass spectrometer scan range was 1,400–2,300 amu with an orifice voltage of 50 volts. The scan time was 4.5 seconds per scan for the intact rMAb. The Turbo Ion Spray scan range was 1,500–2,300 amu (4 second scan time) for analysis of the intact rMAb. The nitrogen nebulizer gas was heated to 120° C with an orifice voltage of 40 volts. A scan range of 400–2,400 amu (10 second scan time) was used for analysis of the reduced and alkylated rMAb heavy chain. The orifice voltage was 50 volts.

Multidimensional Chromatography

A Waters Alliance 2690 HPLC system (Milford, MA) equipped with sample cooler (5° C), column heater, and 996 photodiode array (PDA) detector was used for the chromatographic separations. The column eluant entering the mass spectrometer was split 3:1 with the majority directed to waste or to a fraction collector.

The Alliance 2690 chromatograph was uniquely configured with three Rheodyne LabPro column selectors (Rheodyne, Cotati, CA) to provide a multidimensional chromatographic platform for structure characterization. Two 6-column selectors were used before the PDA detector to select the HPSEC column for the first dimension analysis or to select the RP-HPLC column for the second dimension analysis. A 3-column selector, used after the PDA detector, directed the column effluent to the mass spectrometer or to waste.

The Alliance 2690 chromatograph and Waters Millennium 32[™] client/server software can control one column selector

Table 1: RP-HPLC-ESI-MS $\mathbf{M_r}$ Glycoform Determination of Intact rMAb with C-terminal Lysine Truncation.

Lot No.	agalacto (G0)	monogalacto (G1)	digalacto (G2)
cDNA Mass	<u> 146451</u>	<u>146775</u>	<u>147099</u>
1	146466	146785	147101
2	146465	146790	ND
3	146476	146797	147095
4	146458	146774	147106
5	146466	146801	147116

Note: M_r for five lots of the rMAb is reported in which the C-terminal lysines are truncated. The RP-HPLC mobile phase modifier was 0.1% TFA. The ESI-MS was configured with the Ion Spray source. Lot 5 is the control. ND = not detected.

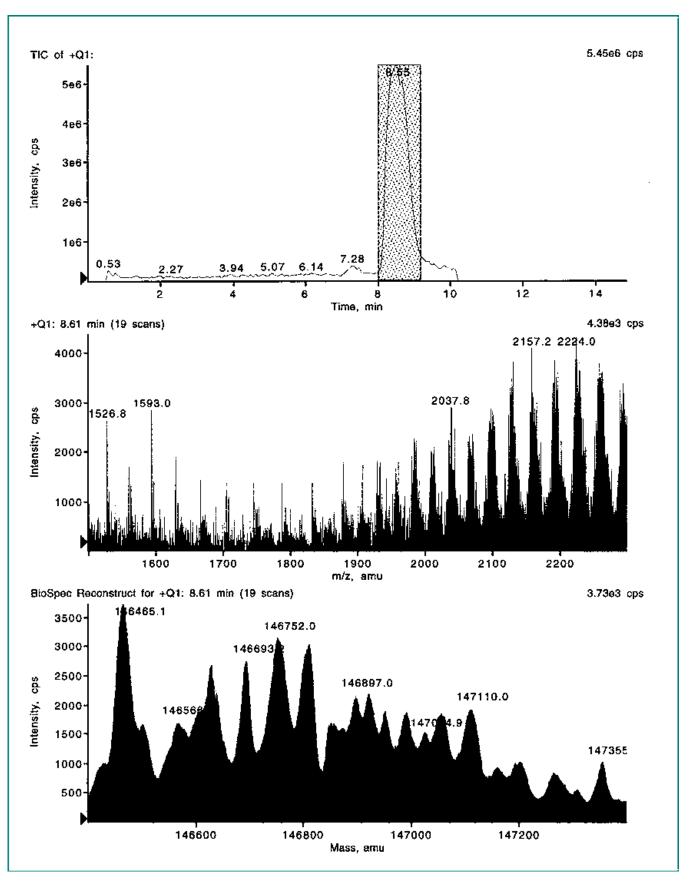


Figure 2.The RP-HPLC-ESI-MS analysis of intact rMAb is presented using formic acid as the RP-HPLC mobile phase modifier. The upper panel shows the ESI-MS TIC. The middle panel shows the ESI-MS mass spectrum. The lower panel shows the deconvoluted ESI-MS mass spectrum of the intact rMAb with the eight glycoforms detected. See Table 2 for the M_{Γ} glycoform mass assignments.

Table 2: RP-HPLC-ESI-MS M _r Glycoform Determination.									
		-0-Lysines		1-Lysine		2-Lysines			
eDNA									
<u>Mass</u>	146451 (G0)	146775 (G1)	147099 (G2)	146579 (G0)	146903 (G1)	147228 (G2)	146707 (G0)	147031 (G1)	147356 (G2)
1	146465	146752	147110	146566	146897	NF	146693	147024	147354
2	146463	146794	147116	NP	NF	NF	146702	147040	147369
3	146465	146769	147116	NF	146921	147224	146721	147041	NF

Note: M_r for five lots of the rMAb is reported using 0.25% formic acid as the RP-HPLC mobile phase modifier. The ESI-MS was configured with a Turbo Ion Spray source. The cDNA-derived mass for G0, G1 and G2 is shown under each of the three C-terminal lysine heavy chain modifications. Lot 5 is the control. NF = not found.MDC reports M_r determined with multidimensional chromatographic analysis of the rMAb.

146903

NF

146906

147232

147256

NF

146711

NF

146722

with its internal switches. The PDA's two contact closures were used to sequentially control the first 6-column selector and the 3-column selector. The second 6-column selector was controlled by the chromatograph's TTL switch to rapidly and non-sequentially select the RP-HPLC column to capture pure components eluting from the HPSEC column for subsequent analysis. A Waters SAT/N module was installed to power the third column selector.

146466

146445

MDC

146775

146787

146777

RP-HPLC

NF

146548

146586

147119

147115

147095

Mobile phase A (0.1% Triflouroacetic acid (TFA), Sequanal grade) (Pierce, Rockford, IL), Milli-Q water (Millipore, Bedford,MA), and mobile phase B (90% acetonitrile, Optima grade) (Fisher, Fairlawn, NJ), and 0.1% TFA Milli-Q water were used with the Ion Spray source. A five-minute, 45–55% gradient was used with a Waters Symmetry C-18 column (2.1 x 150 mm, 300 Angstrom, d_p 5 μm) at 45° C to introduce the rMAb

into the Ion Spray source for mass analysis.

147027

NF

147019

147361

NF

147361

Mobile phase A (0.25% formic acid) (Sigma, St. Louis, MO), Milli-Q water, and mobile phase B (100% acetonitrile, 0.25% formic acid) were used with the Turbo Ion Spray source. A Poros R2/20 RP-HPLC column (2,000 Angstrom, 2.1 x 30 mm) (PerSeptive BioSystems, Inc., Framingham, MA), was used for the RP-HPLC separation of the intact rMAb at 60° C. A Poros R2/10 RP-HPLC column (1,000 Angstrom, 2.1 x 30 mm) at 60° C was used for the RP-HPLC separation of the reduced and alkylated rMAb. A gradient of 25-50% mobile phase B over 15 minutes was used for the intact rMAb and for the reduced and alkylated rMAb.

A 25–65% aqueous, acetonitrile, 0.25% formic acid gradient over 20 minutes (including an initial five minute hold to remove salts) was used for the RP-HPLC assay in the multidimensional HPSEC-RP-HPLC-ESI-MS analysis of the intact rMAb. All RP-HPLC separations used linear gradients at 0.2 ml/minute,monitored at 214 nm.

Size Exclusion Chromatography (HPSEC)

A Toso Haas G3000SW SEC column (7.5 x 300 mm) (Phenomenex, Torrance, CA), at ambient temperature with a flow rate of 0.5 ml/minute was used for the SEC separations of the rMAb and aggregates. UV detection was at 214 nm. The mobile phase was 0.1M Na₂HPO₄ (Fisher), with pH 7.0, and contained 0.1M NaCl (Fisher) in Milli-Q water.

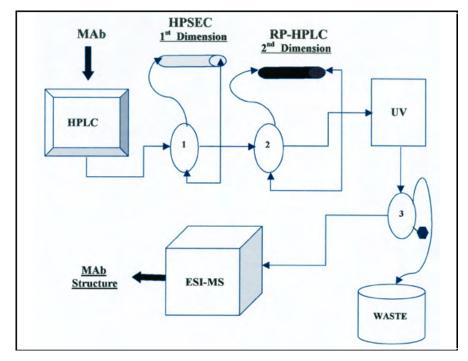


Figure 3.The HPSEC and RP-HPLC two-dimensional separation is depicted with the Alliance HPLC system and the ESI-MS mass spectrometer. HPSEC is used as the first dimension followed by RP-HPLC as the second dimension which is combined on-line with ESI-MS to provide structure analysis of the intact rMAb.

Topics Include:

Antibodies & Recombinant **Proteins:**

- Product Characterization
- Stability & Storage
- Expression Enhancement
- Regulatory Issues
- Cell Line Development
- Viral Clearance
- Assay Development
- Purification
- Safety Testing
- Conjugation & Formulation

Viral Vectors & Vaccines:

- Vector Development
- Raw Material Screening
- Assay & Media Development
- Viral Yield Optimization
- Downstream Processing
- Storage & Stability
- QA/QC Issues
- Reference Material Issues
- Product Characterizations

The Williamsburg BioProcessing Conference

EUROPE 2004

FIRST ANNUAL MEETING

Process Development and Production Issues for Eukaryotic Cell Derived Products

> The Amsterdam Marriott – Amsterdam, The Netherlands

Antibodies & Recombinant Proteins March 15–17, 2004

> Viral Vectors & Vaccines March 18–19, 2004

BioProcessing

WilBio

The Williamsburg **BioProcessing Foundation**

info@wilbio.com ◆ 757.423.8823 ◆ www.wilbio.com

©2003 The Williamsburg BioProcessing Foundation

Reductive Alkylation of intact rMAb⁴⁵

 $100~\mu L$ (ca. 2 mg) of rMAb was diluted with 500 μL (0.1M) Tris Base (Fisher), 2mM EDTA (Aldrich, Milwaukee, WI), and 6M Sequanal-grade guanidine hydrochloride (Pierce) at pH 8.4 then treated with 10 μL of 1.0M DTT (Sigma) at 65° C for 1.5 hours. The reduced rMAb was cooled to room temperature, alkylated with 50 μL of 0.5M iodoacetamide (Sigma) in the dark with vortexing for 45 minutes, and quenched with 30 μL of 1.0M DTT.

Results

RP-HPLC-ESI-MS analysis of the rMAb control (lot 5) was first investigated with aqueous acetonitrile (0.1% TFA) gradients. The ESI-MS was configured with the Ion Spray source to determine glycoform composition and lot-to-lot consistency.

The acetonitrile RP-HPLC gradient, combined with the ESI-MS analysis of the rMAb control, showed populations of multiple masses indicating heterogeneity. The predominant observed microheterogeneity corresponded to the major glycoforms that result from truncation of the heavy chain C-terminal lysine (Go, G1, and G2). Glycoforms containing the heavy chain C-terminal lysine were not detected nor was the aglycosylated rMAb at 143561 Da. The rMAb peptide map also lacked the corresponding aglycosylated peptide fragment (data not shown) further indicating complete oligosaccharide site occupancy at the heavy chain asparagine.

The accuracy of an ESI mass spectrometer is 0.01% for pure compounds infused into the ESI-MS. Thus, the expected M_r for a rMAb with a calculated molecular mass of 150 kDa would be 150

kDa ± 15 Da. The M_r of the rMAbs in this study were therefore capable of distinguishing the glycoforms present, all of which differed by the addition or deletion of a galactose residue with a mass of 162 Da and/or a lysine residue with a mass of 128 Da. However, the mass accuracy is insufficient to determine deamidation of an asparagine with a mass shift of 1 Da. The dehydration of the heavy chain Nterminal glutamic acid and methionine oxidation with mass shifts of 18 Da and 16 Da is potentially within the capabilities of the ESI-MS. However, those mass shifts are near the limit of mass accuracy for the 150 kDa rMAb and are difficult to identify with certainty.

The RP-ESI-MS analysis was used to compare rMAb lots derived from different experimental cell culture and purification processes for product identity and for lot-to-lot consistency. Mrs for the intact rMAb glycoforms detected in the control and the experimental lots of the rMAb were compared to their cDNAderived masses. The glycoforms present in all lots were $G_0 \ge G_1 > G_2$ with truncation of the heavy chain C-terminal lysine. The cDNA-derived masses of the isoforms and M_r for the intact rMAb resulting from the combined glycoform microheterogeneity and the C-terminal lysine heterogeneity are shown in Table 1.

The deconvoluted mass spectral peak intensity of each glycoform is assumed to derive from the positively charged rMAb structural framework and to be comparable to each other because the rMAb glycans are asialylated and lack charged groups.^{23,25} The digalacto glycoform showed the greatest variability in the experimental lots. It was not observed in lot 2.

Thus, this RP-HPLC-ESI-MS investigation successfully determined profiles of

the three major glycoforms present in an intact rMAb of mass ca. 150 kDa and was able to compare experimental lots. In addition, RP-HPLC-ESI-MS analysis determined that the rMAb glycoform profile consisted exclusively of the C-terminal lysine truncated heavy chain. However, RP-HPLC-ESI-MS analysis of tryptic digests revealed the presence of two C-terminal heavy chain peptide fragments in which the predominant peptide fragment terminated without lysine while the less-abundant peptide fragment terminated with lysine (data not shown). Therefore, the RP-HPLC-ESI-MS analysis of the intact rMAb lacked the sensitivity required to detect the less abundant Cterminal heavy chain lysine glycoforms.

The ESI mass spectrometer sensitivity is typically low for these large molecular weight biomolecules. This is principally due to limited protonation and nebulization of the ionized species generated, dilution of signal strength resulting from the large number of mass-to-charge (m/z) fragments generated, chemical noise, and the limited number of scans attainable with the RP-HPLC peaks used to introduce the rMAb sample into the ESI-MS source.

The Turbo Ion Spray source was installed on the API 165 mass spectrometer to increase nebulization of the rMAb ion cluster to enhance ESI-MS sensitivity in an attempt to detect the less-abundant heavy chain C-terminal lysine glycoforms. In addition, the RP-HPLC mobile phase modifier was changed from TFA to formic acid to further enhance ion formation and sensitivity because TFA can suppress the ionization of proteins. Huber showed that a 35 to 160-fold improvement in RP-HPLC-ESI-MS detection of proteins with masses of 14-80 kDa can be achieved with the use of formic acid versus TFA.46

ESI-MS mass analysis with formic acid as the RP-HPLC mobile phase modifier successfully detected the three major C-terminal heavy chain truncated lysine glycoforms and the three less-abundant glycoforms in which the C-terminal heavy chain terminated with lysine. The glycoform profile was generally observed as: $G_0 > G_1 > G_2$ (Fig. 2).

Recombinant MAbs in which only one of the two C-terminal heavy chains terminated with lysine were also detected

Table 3: Calculated and Experimental ($\rm M_{\, I}$) Masses (Da) of rMAb Alkylated Heavy Chain Glycoforms.

	<u>0-L</u> ysi	ne	<u>1-Lysine</u>		
Glycoform	cDNA Mass	Mr	cDNA Mass	Mr	
agalacto (G0)	50574	50581	50702	50706	
monogalacto (G1)	50737	50733	50865	50866	
digalacto (G2)	50899	50899	51027	51025	
aglycosyl	48502	NF	48630	NF	

Note: Alkylation of the 11 sulfhydryl groups with iodoacetamide ($-CH_2CONH_2$, 57 Da) adds mass of 627 to the heavy chain. NF = not found.

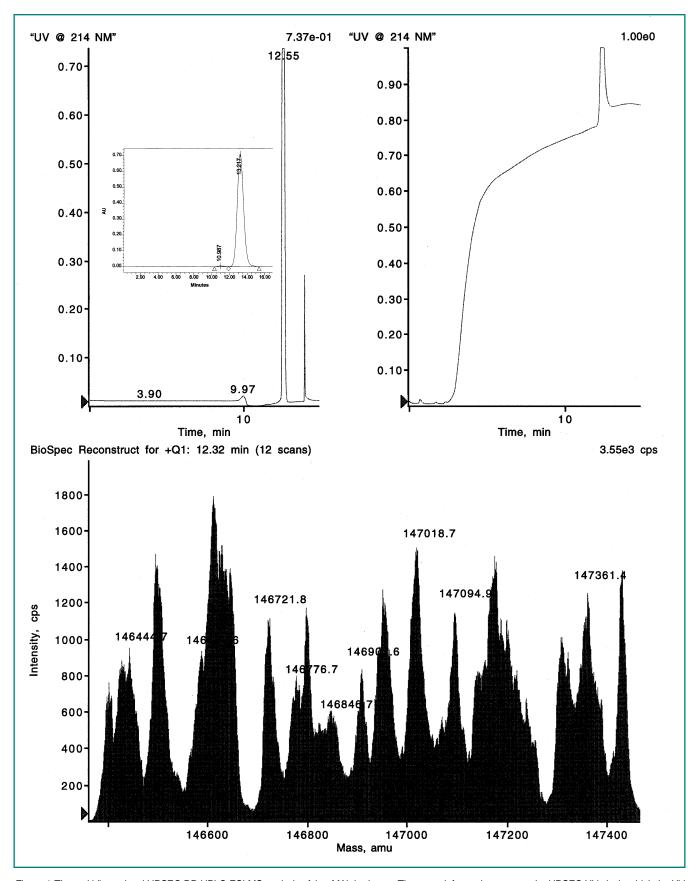


Figure 4. The multidimensional HPSEC-RP-HPLC-ESI-MS analysis of the rMAb is shown. The upper left panel represents the HPSEC UV plot in which the UV signal is lost during the switch to the RP-HPLC column and capture of the rMAb. The two observed peaks are due to refractive index changes in the UV. The inset shows the HPSEC separation without RP-HPLC capture. The upper right panel shows the UV plot of the captured rMAb eluted from the RP-HPLC column. The lower panel is the deconvoluted mass spectrum for the intact rMAb showing the nine glycoforms detected. See Table 2 for the M_Γ glycoform mass assignments. M_Γ 146847 corresponds to an isoform with two C-terminal Lysine heavy chains and a single galactose residue (cDNA derived mass = 146869).

in some experimental lots. An intact rMAb expressed with lysine on only one heavy chain can be detected by ESI-MS analysis of the intact rMAb or the Fc fragment derived from papain treatment.²⁵ The ability to detect those rMAbs in which only one C-terminal heavy chain terminates with lysine is lost when heavy chain rMAb fragments are mass analyzed. Thus, ESI-MS analysis of an intact rMAb can provide more information than analysis of rMAb fragments. A further advantage of analysis of the intact rMAb is that it does not require sample preparation.

The M_r accuracy of the glycoforms reported in Table 2 ranges from less than 0.01% to ca. 0.021% of the cDNAderived mass. This compares favorably with the theoretical mass accuracy of 0.01% for an ESI-MS system achieved with the infusion of pure compounds. The mass accuracy reported for the RP-HPLC-ESI-MS analysis of the rMAb is a result of the complex m/z envelope, the number of ions formed, ion adduction, the limited number of scans that can be achieved as the eluting rMAb RP-HPLC peak passes through the mass scan range, and the resolution of the mass spectrometer.^{17–20} However, careful control of the mass spectrometer and RP-HPLC conditions, and tuning the ESI-MS for maximum resolution can accurately identify C-terminal lysine heterogeneity and the glycoform ensemble in intact rMAbs.

The results of this RP-HPLC-ESI-MS analysis of the intact rMAb were subjected to confirmation by analysis of the smaller mass heavy chain (50 kDA) which is more amenable to accurate mass determination than the larger intact rMAb (150 kDA). The three truncated lysine glycoforms and three less abundant lysine glycoforms were observed in the RP-HPLC analysis of the heavy chain (Table 3). Therefore, the RP-HPLC-ESI-MS determination of lysine and glycoform heterogeneity in the intact rMAb was confirmed to be consistent with the RP-HPLC-ESI-MS analysis of the reduced and alkylated rMAb heavy chain.

MDC performance is dependent on the ability of the HPLC system to use multiple, often incompatible, mobile phases and to control two or more column selectors. MDC separations have been reported using commercially available systems and with chromatographs modified with

the addition of column selectors. 46-58

A Waters Alliance 2690 chromatograph with a 996 PDA detector was combined with three Rheodyne LabPro column selectors under the control of Waters Millennium 32 chromatography software to provide a novel MDC platform to combine with ESI-MS for rMAB characterization. The RP-HPLC-ESI-MS analysis was combined with high-performance size exclusion chromatography (HPSEC) to investigate the feasibility of the two-dimensional chromatographic separation of the rMAb with ESI-MS analysis. The rMAb was separated from its aggregates by HPSEC in the first dimension and captured by the RP-HPLC column beginning at 12.2 minutes with capture ending at 13.8 minutes. The HPSEC separation was terminated after 15 minutes. The RP-HPLC elution of the RP-HPLC captured rMAb began immediately upon completion of the HPSEC separation. Each two-dimensional analysis required 60 minutes for completion.

The two-dimensional HPSEC-RP-HPLC-ESI-MS mass determination of the rMAb glycoforms is shown in Figure 4. The three major C-terminal heavy chain truncated lysine glycoforms and the three less abundant C-terminal lysine glycoforms were determined in this multidimensional HPSEC-RP-HPLC-ESI-MS mass analysis (Table 2). Recombinant MAbs containing 1-lysine were also detected with the one-dimensional RP-HPLC-ESI-MS analysis of the rMAb reported above. A rMAb in which both heavy chains terminate with lysine and in which only one galactose residue is attached to one of the two heavy chain oligosaccharides was also detected in the MDC analysis of the rMAb (Mr 146847, cDNA-derived mass 146869). Additional studies are being conducted to optimize this multidimensional separation for the analysis of rMAbs. Thus, it has been demonstrated that it is feasible to employ two-dimensional HPSEC-RP-HPLC-ESI-MS for the structure characterization of rMAbs.

Summary

This study demonstrates that on-line RP-HPLC-ESI-MS can rapidly identify the mass of intact rMAbs, determine heavy chain C-terminal lysine amino acid heterogeneity, and profile the glycoform composition resulting from oligosaccharide variability. Eight of 15 possible isoforms of the intact rMAb — the three major C-terminal heavy chain truncated lysine glycol-forms, the three less-abundant C-terminal heavy chain lysine glycoforms, and glycoforms in which one of the two C-terminal heavy chain lysines has been proteolytically clipped — were determined with RP-HPLC combined with on-line ESI-MS analysis.

The feasibility of a MDC approach that incorporates HPSEC as the first dimension separation on-line with RP-HPLC-ESI-MS has been demonstrated for the first time. In addition, this is the first report of a Waters Alliance 2690 chromatograph configured to perform MDC and combined with ESI-MS for the structure characterization of a rMAb.

These on-line RP-HPLC-ESI-MS analyses may be used to characterize, identify, and confirm the structure of intact rMAbs for product control and to monitor product quality during development.

ACKNOWLEDGEMENTS

The author thanks Roland Mengisen for providing the experimental rMAb lots used in this study and William Nyquist of Waters Corporation for providing technical support and the implementation of the column selectors.

REFERENCES

- 1. Gavilondo JV, Larrick JW. Antibody engineering at the millennium. Biotechniques 2000;29:128–45.
- 2. Interim definition and elimination of lot-by-lot release for well-characterized therapeutic recombinant DNA-derived and monoclonal antibody biotechnology products. Federal Register 1995;60:63048.
- 3. International Conference on Harmonization guidance on specifications: test procedures and acceptance criteria for biotechnological/biological products. Federal Register 1999;64:44928.
- 4. Dorrington KJ. The structural basis for the functional versatility of immunoglobulin G. Can J Biochem 1978;56:1087–1101.
- 5. Harris RJ. Processing of C-terminal lysine and arginine residues of proteins isolated from mammalian cell culture. J Chromatogr 1995;A705:129–34.
- 6. Jefferis R. Glycosylation of human IgG antibodies: Relevance to therapeutic applications, BioPharm September, 2001;19–277.
- 7. Kobata A. A Retrospective and prospective view of glycopathology. Glycoconjugate Journal 1998;15:323–31. 8. Dwek RA, Lellouch AC, Wormald MR. Glycobiology: 'the function of sugar in the IgG molecule'. J Anat 1995;187:279–92.

- 9.Isenberg, D. Abnormalities in the glycosylation of IgG and its clinical utility. In: Alavi A, Axford JS, editors. Glycoimmunology. New York: Plenum Press; 1995. p 179–83. 10. Clark MR. IgG Effector Mechanisms. In: Capra JD, editor. Antibody Engineering: Chem Immunol Basel, Switzerland: Karger; 1997. p 88–110.
- 11. Newkirk MM, Novick J, Stevenson MM, Fournier MJ, Apostolakos P. Differential clearance of glycoforms of IgG in normal and autoimmune-prone mice. Clin Explmmunol 1996;106:259–64.
- 12. Masuda K, Yamaguchi Y, Kato K, Takahashi N, Shimada I, Arata Y. Pairing of oligosaccharides in the Fc region of immunoglobulin G. FEBS Lett 2000;473:349–57.

 13. Karras M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 1988;60:2299–2301.
- 14. Hillenkamp F, Karas M, Beavis RC, Chait BT. Matrixassisted laser desorption/ionization mass spectrometry of biopolymers. Anal Chem 1991;63:1193A—1202A.
- 15. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989;246:64–71.
- 16. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM.Electrospray ionization principles and practice. Rev. 1990;9:37–70.
- 17. Ashton DS, Beddell CR, Cooper DJ, Craig SJ, Lines AC, Oliver RWA, Smith MA. Mass spectrometry of the humanized monoclonal antibody CAMPATH 1H. Anal Chem 1995;67:835–42.
- 18. Roberts GD, Johnson WP, Burman S, Anumula KR, Carr SA. An integrated strategy for structural characterization of the protein and carbohydrate components of monoclonal antibodies: application to anti-respiratory syncytial virus MAb. Anal Chem 1995;67:3613–25.
- 19. Bennett KL, Hick LA, Truscott RJW, Sheil MM, Smith SV. Optimum conditions for electrospray mass spectrometry of a monoclonal antibody. J Mass Spectrom 1995;30:769–71. 20. Bennett KL, Smith SV, Lambrecht RM, Truscott RJW, Sheil MM. Rapid characterization of chemically-modified proteins by electrospray mass spectrometry. Bioconjug Chem 1996;7:16–22.
- 21. Adamczyk M, Gebler JC, Harrington CA, Sequeira AF. The use of electrospray ionization mass spectrometry to distinguish the lot-to-lot heterogeneity of an antigenspecific monoclonal antibody from a specific cellular clone. Eur Mass Spectrom 1999;5:165–68.
- 22. Lewis DA, Guzzetta AW, Hancock WS, Costello M. Characterization of humanized anti-TAC, an antibody directed against the interleukin 2 receptor, using electrospray ionization mass spectrometry by direct infusion, LC/MS, and MS/MS. Anal Chem 1994;66:585—95.
- 23. Wan HZ, Kaneshiro S, Frenz J, Cacia J. Rapid method for monitoring galactosylation levels during recombinant antibody production by electrospray mass spectrometry with selective-ion monitoring. J Chromatogr 2001;A913:437–46.
- 24.Jiskoot W, van de Werken G, Coco Martin JM, Green BN, Coen Beuvery E, Crommelin DJA. Application of electrospray mass spectrometry (ES-MS) for the analysis of monoclonal antibody Fc subunits. Pharm Res 1992; 9:945–51.
- 25. Cacia J, Keck R, Presta LG, Frenz J. Isomerization of an aspartic acid residue in the complementarity-determining regions of a recombinant antibody to human IgE: identification and effect on binding affinity. Biochemistry 1996;35:1897–1903.
- 26. Bennett KL, Smith SV, Truscott RJW, Sheil MM. Monitoring papain digestion of a monoclonal antibody

- by electrospray ionization mass spectrometry. Anal Biochem 1997:245:17–27.
- 27. Adamczyk M, Gebler JC, Wu J. Papain digestion of different mouse IgG subclasses as studied by electrospray mass spectrometry. J Immunol Meth 2000;237:95—104. 28. Sheeley DM, Merrill BM, Taylor LCE. Characterization of monoclonal antibody glycosylation: comparison of expression systems and identification of terminal alphalinked galactose. Anal Biochem 1997;247:102—10.
- 29. Kroon DJ, Freedy J, Burinsky DJ, Sharma B. Rapid profiling of carbohydrate glycoforms in monoclonal antibodies using MALDI/TOF mass spectrometry. J Pharm Biomed Anal 1995;13:1049–54.
- 30. Hirayama K, Yuji R, Yamada N, Kato K, Arata Y, Shimada I. Complete and rapid peptide and glycopeptide mapping of mouse monoclonal antibody by LC/MS/MS using ion trap mass spectrometry. Anal Chem 1998:70:2718–75.
- 31. Siegel MM, Tabei K, Kunz A, Hollander IJ, Hamann PR, Bell DH, Berkenkamp S, Hillenkamp F. Calicheamicin derivatives conjugated to monoclonal antibodies: determination of loading values and distributions by infrared and UV matrix-assisted laser desorption/ionization mass spectrometry and electrospray ionization mass spectrometry. Anal Chem 1997;69:2716–26.
- 32. Feng R, Konishi Y. Analysis of antibodies and other large glycoproteins in the mass range of 150,000-200,000 Da by electrospray ionization mass spectrometry Anal Chem 1992;64:2090–95.
- 33. Nedved M, Adomaitis M, Vavala M, Shivarig R, Minshall C, Plucinsky M, Siegel R. Validation of ESI-MS data for antibodies and antibody fragments from mammalian cell culture. Paper presented at the 47th American Society for Mass Spectrometry Conference; June 13-17, Dallas, Texas. 1999:272–73.
- 34. Verentchikov AN, Ens W, Standing KG. Reflecting timeof-flight mass spectrometer with an electrospray ion source and orthogonal extraction Anal Chem 1994;66:126–33. 35. Santora LC, Krull IS, Grant K. Determination of recombinant monoclonal antibodies and non-covalent antigen Tnfa trimer using Q-TOF mass spectrometry. Spectroscopy 2002;17:50–57.
- 36. Samain DF. Multidimensional chromatography in biotechnology. In: Giddings JC, editor. Adv Chromatogr New York: Marcel Dekker, Inc.;1989. p 77–132.
- 37. Sagliano N, Raglione TV, Hartwick RA. Multi-dimensional Techniques in Chromatography. In: Brown PR, Hartwick RA, editors. High Performance Liquid Chromatography. New York: John Wiley & Sons; 1989. p 643–68.
- 38. Bartle KD, Davies I, Raynor MW, Clifford AA, Kithinji JP. Unified multidimensional microcolumn chromatography. J Microcolumn 1 September 1989:63–70.
- 39. Rothman LD. Hardware Considerations for the Automation of Multidimensional Chromatographs. In: Cortes HJ, editor. Multidimensional Chromatography: Techniques and Applications. New York: Marcel Dekker, Inc.;1990. p 359–74.
- 40. Cortes HJ. Developments in multidimensional separation systems. J Chromatogr 1992;626:3–23.
- 41. Dorsey JG, Cooper WT, Siles BA, Foley JP, Barth HG. Liquid chromatography: theory and methodology. Anal Chem 1996;68:515R–568R.
- 42. Vissers JPC, Claessens HA, Cramers CA. Microcolumn liquid chromatography: instrumentation,detection and applications. J Chromatogr 1997;A779:1–28.

 43. Vissers JPC. Recent developments in microcolumn liquid chromatography. J Chromatogr 1999;A856:117–43.

 44. Nadler TK, Paliwal SK, Regnier FE. Rapid, automat-

- ed, two-dimensional high-performance liquid chromatographic analysis of immunoglobulin G and its multimers. J Chromatogr 1994;A676:331–35.
- 45. Gulati D, Bongers J, Burman S. RP-HPLC tryptic mapping of IgG1 proteins with post-column fluorescence derivatization. J Pharm Biomed Anal 1999;21:887–93.
 46. Huber CG, Premstaller A. Evaluation of volatile eluents and electrolytes for high performance liquid chromatography electrospray ionization mass spectrometry and capillary electrophoresis-electrospray ionization mass spectrometry of proteins I. Liquid chromatography. J Chromatogr 1999;A849:161–73.
- 47. Amari JV, Mazsaroff I. Analysis of recombinant human interleukin-11 fusion protein derived from Escherichia coli lysate by combined size-exclusion and reversed-phase liquid chromatography. J Chromatogr 1996;A729:113–24.
- 48. Hsieh YF, Gordon N, Regnier F, Afeyan N, Martin SA, Vella GJ. Multidimensional chromatography coupled with mass spectrometry for target-based screening. Mol Diversity 1996;2:189–96.
- 49. Opiteck GJ, Jorgenson JW, Moseley III MA, Anderegg RJ. Two-dimensional microcolumn HPLC coupled to a single-quadrupole mass spectrometer for the elucidation of sequence tags and peptide mapping. J Microcolumn 10 Sep. 1998:365–75.
- 50. Fang Y, Dumont L, Larsen B. Real-time isoform analysis by two-dimensional chromatography of a monoclonal antibody during bioreactor fermentation. J Chromatogr 1998;A816:39–47.
- 51. Hsieh YLF, Wang HQ, Elicone C, Mark J, Martin SA, Regnier F. Automated analytical system for the examination of protein primary structure. Anal Chem 1996;68:455–62. 52. Battersby JE, Snedecor B, Chen C, Champion KM, Riddle L, Vanderlaan M. Affinity-reversed-phase liquid chromatography assay to quantitate recombinant antibodies and antibody fragments in fermentation broth. J Chromatogr 2001;A927:61–76.
- 53. Opiteck GJ, Jorgenson JW. Two-dimensional SEC/RPLC coupled to mass spectrometry for the analysis of peptides. Anal Chem 1997;69:2283–91.
- 54. Nicholson LM, Patel HB, Kristjansson F, Crowley Jr. SC, Dave K, Stobaugh JF, Riley CM. Multidimensional liquid chromatography of opioid peptides: fluorogenic labelling, retention prediction, and separation optimization. J Pharm Biomed Anal 1990;8:805–16.
- 55. Stopher DA, Gage R. Determination of a new antifungal agent, voriconazole, by multidimensional high-performance liquid chromatography with direct plasma injection onto a size-exclusion column. J Chromatogr 1997;B691:441–48.
- 56. Szuna AJ, Blain RW. Determination of a new anti-bacterial agent (Ro 23-9424) by multidimensional high-performance liquid chromatography with ultraviolet detection and direct plasma injection. J Chromatogr 1993;620:211–16.
- 57. Apffel A, Chakel JA, Hancock WS, Souders C, M'Timkulu T, Pungor Jr. E. Application of multidimensional affinity high-performance liquid chromatography and electrospray ionization liquid chromatography-mass spectrometry to the characterization of glycosylation in single-chain plasminogen activator. Initial results. J Chromatogr 1996;A750:35–42.
- 58. Janiszewski JS, Rogers KJ, Whalen KM, Cole MJ, Liston TE, Duchoslav E, Fouda HG. A high-capacity LC/MS system for the bioanalysis of samples generated from plate-based metabolic screening. Anal Chem 2001;73:1495–1501.

Delivering Quality and Speed from Process Development to Clinical Production since 1985.

BioVest International Inc. provides the Pharmaceutical and Biotech community with full service Process Development and Clinical Contract Manufacturing.

BioVest International pioneers the development of leading cell-culture instruments. This strenghthens our ability to optimize the manufacturing process for cell lines, leading to higher quality output and improved time-to-market for your projects.

From pre-clinical research through commercial production scale, BioVest International delivers!

BioVest International

For more information please call: 410.658.7430 or 800.325.1112 www.biovest.com