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Improving Biopharmaceutical 
Manufacturing Yield Using 

Neural Network Classification
By Will Fahey and Paula Carroll

Abstract

T
raditionally, the Six Sigma frame-
work has underpinned quality 
improvement and assurance in 
biopharmaceutical manufacturing 

process management. This paper proposes 
a neural network (NN) approach to vaccine 
yield classification and compares it to an 
existing multiple linear regression approach. 
As part of the Six Sigma process, this paper 
shows how a data mining framework can 
be used to extract further value and insight 
from the data gathered during the manu-
facturing process, and how insights into 
yield classification can be used in the quality 
improvement process.

1.  Introduction
The World Health Organization states that pneumococ-

cal disease is the world’s number one vaccine-preventable 
cause of death among infants and children under the age 
of five.[1] Vaccines are a crucial resource in the fight to 
lower infant mortality rates for developing countries[2], 
coming second only to clean drinking water. However, the 
vaccine manufacturing sector is quite fragile due to strict 
regulatory licensing and cost concerns.[3] Approaches to 
public health policies that could contribute to the sustain-
ability of the vaccine manufacturing sector are outlined 
by Robbins and Jacobson.[3] The focus of Proano et al.[2] is 
on price-bundle determination for combination vaccines, 
which maximise social good by ensuring sufficient vaccine 
is produced while also ensuring minimum profit levels to 
guarantee the long-term viability of manufacturers. 

This article focuses on a different idea that may con-
tribute to ensuring the long-term viability of the sector 
by exploiting value from the data gathered for regulatory 
compliance and operations management.  

1.1.  The Vaccine Manufacturing Process
A vaccine is typically made up of a number of individ-

ual polysaccharide components, called serotypes, which 
immunize the recipient against a particular strain of the 
targeted disease.[4] Manufacturing a pneumococcal vaccine 
is a complicated procedure, involving the use of bioreac-
tors to manage cells so they produce the various active 
biological substances.[5] A bioreactor is a vessel used to 
replicate the conditions found in a mammalian body that 
are needed to promote the creation of the biological com-
ponents that combine to form the vaccine product. These 
components are passed through various ultrafiltration 
steps which purify the product, and diafiltration steps 
which concentrate the product to desired levels. The pro-
cess is categorised by long lead times of up to 30 days. 
Manufacturing one batch may involve between 40 and 50 
process steps which may be characterised by explanatory 
variables (EVs) such as temperature, pressure, and both 
nutrient and gas flow rates at various points during the 
production process. 

A vaccine manufacturing process involves the combi-
nation of saccharide components which elicit the desired 
immune response from a recipient. In this paper, the suc-
cess of this combination is reported as the “yield” and is 
defined as the amount of vaccine created in a production 
batch as a percentage of the expected amount (based on 
the quantity of raw materials used). The dynamic nature 
of biological components used in vaccine manufacturing 
renders static methods of measurement as only indicative, 
and adds to the complexity of identifying root causes of 
yield fluctuation.

Traditionally, Six Sigma (6σ) approaches such as design 
of experiments (DOE) and statistical process control (SPC) 
techniques have been used to improve yield and decrease 
variability.[6] The method utilised by 6σ to achieve quality 
improvement (QI) is the use of brainstorming to generate 
hypotheses about which EVs have an impact on quality. 
Then, statistical methods such as regression, or hypothesis 
testing, are used to confirm or disprove these hypotheses. 
Such analyses provide the necessary feedback for product/
process design (or redesign), as well as other corrective 
QI actions.[7]
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To identify the root cause of poor yield, 6σ is the incum-
bent approach used by example company “Z.” The vaccine 
manufacturing process has multiple biological inputs, each 
with multiple quality characteristics that may potentially 
explain yield fluctuation. There are many combinations 
of control equipment settings and possible EVs, so it is 
often unclear how the inputs interact and how the multiple 
measurement settings affect process outputs. However, 
if the 6σ process is taken to its theoretical conclusion, a 
potentially exponential number of hypotheses could be 
generated during the measurement of a complex issue 
such as yield variability. In brainstorming sessions, there 
are also considerations of inherent human bias that might 
influence the identification of a possible root cause during 
the 6σ measurement phase.

Large amounts of data are generated and collected 
by automated manufacturing processes, most of 
which are used for process control rather than process 
improvement.[8] This paper proposes a novel approach 
for extracting real business value from the wealth of data 
that has already been gathered. The method focuses on 
an evaluation of neural networks (NNs) to generate and 
test hypotheses about which process parameters, or com-
binations of parameters, lead to a high or low yield. In 
this case, a hypothesis is that a process parameter setting 
contributes to yield fluctuation. Two serotypes, referred 
to as serotype “X” and serotype “Y”, are the subject of this 
study which was undertaken using manufacturing data 
from company Z.

2.  Vaccine Manufacturing  
Challenges and Opportunities

Biopharmaceutical manufacturing is one of the most 
heavily regulated industries in the world today. Regulatory 
bodies such as the US Food and Drug Administration (FDA) 
have been relentless in driving higher levels of process 
control and understanding in the biopharmaceutical sec-
tor. These bodies recognise the significance and untapped 
potential of data mining (DM) methods to enable more 
robust biological manufacturing processes through 
increased process knowledge. Analysis of manufacturing 
data using multivariate data analysis (MVDA) was stimu-
lated by the FDA’s landmark guidance on process analytical 
technology (PAT) in 2004.[9] Regulatory authorities are 
demanding a greater level of process characterisation and 
robustness in the biopharmaceutical industry as a means of 
ensuring a consistent supply of safe, efficacious products 
for patients. However, there remains a gap between the 
huge quantities of manufacturing data available and how 
much knowledge the industry derives from it.[10]

Regular changes to production processes are inevitable 
in a manufacturing industry—particularly when a strong 
culture of continuous improvement in 6σ  exists. However, 
every change involves risk. Quantified risk assessment can 
only be effective in mitigating this risk when the process 

is sufficiently understood. DM then becomes an essential 
tool in assessing the impacts of changes to critical process 
parameters, such as those in downstream operations.[11]

Some of the challenges faced by the vaccine manufac-
turing industry are outlined next. These challenges can 
also be interpreted as DM opportunities[12] and include:
•	 A high number of possible EVs is needed to ensure an 

adequate description of the process, including many 
statistical measures associated with input components 
and process-stage metrics, such as temperature and 
pressure. This is especially true for biological manufac-
turing processes.

•	 A high number of dependencies must be modelled when 
several components are integrated into one system. 
However, it is not only the high number of statistically 
proven dependencies that require significant resources 
to be modelled, but there are other potential dependen-
cies that have to be accepted or rejected as contributing 
to an improved model. This calls for an efficient way of 
pruning hypothesised relations. Inherent yield variabil-
ity, which is referred to in 6σ as a common cause issue, is 
very rarely attributable to a single input value or process 
setting. It  is much more likely that interdependencies 
among EVs conspire to produce a low yield. 

•	 Uncertainty of measurement data, such as the propor-
tion of manually recorded data, is getting smaller, but it 
is still present and indicates the possibility that transcrip-
tion error still exists. Methods to capture the uncertainty 
associated with the auto-capture of other manufactur-
ing data also aim to quantify doubt about the validity 
of sampling, precision, and possible calibration errors.

•	 Incomplete information is a common problem when 
using raw manufacturing data. Values are sometimes 
deemed unimportant to the process outputs, and due 
to resource constraints, are not fully gathered. DM has 
an advantage over traditional statistical methods as it 
offers intelligent ways to replace missing values. One 
such method is k-means clustering.[13]  
With missing data, statistical tests can lose power, results 

can be biased, and analysis may not be feasible at all. 
Missing values are replaced with estimated values accord-
ing to an imputation method or model. In the k-nearest 
neighbor (k-NN) method, a case is imputed using values 
from the k most similar cases. k-NN is a non-parametric, 
lazy learning, algorithm where “non-parametric” means 
that the method does not make any assumptions about the 
underlying data distribution. This property is useful in this 
case study since the data does not necessarily allow typical 
theoretical assumptions like following a typical distribution 
such as normal or exponential. 

“Lazy” refers to the fact that the algorithm does not use 
the training data points to do any generalization. In other 
words, there is no explicit training phase. This speeds up 
the algorithm, making it practical for use in one of the 
nested operators in the DM process, and allows a stronger 
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model than simply replacing each value with the mean of 
the other values. This approach to missing data has been  
used successfully[14] and illustrates another advantage that 
DM techniques have over 6σ regression, which cannot be 
performed with missing values. 

2.1.  The 6σ and Cross-Industry Standard  
Process (CRISP) for DM Methodologies

QI programmes aim for improvements in manufacturing 
yield by using the define-measure-analyse-improve-control 
(DMAIC) approach to reach 6σ quality levels with less than 
3.4 defects per million opportunities.  Each project in the 
6σ methodology has five phases represented by the initials 
in DMAIC. An overview of each phase is as follows:
•	 Define the nature of the problem and frame the problem 

statement. Make sure this statement aligns with the 
project sponsor’s outlook on the issue, and then map 
the process to ensure consensus.

•	 Measure key aspects of the current process and collect 
relevant data. This involves visualising and investigating 
the data to provide insight and potential root causes of 
the issue. Use these as a benchmark for brainstorming 
all potential root causes of the issue.

•	 Analyse the data to investigate and verify cause-and-
effect relationships. Use statistical techniques to rule-in 
or rule-out the potential root causes. Techniques include 
regression and hypothesis testing.

•	 Improve the confirmed root causes by error-proofing the 
issue, and set up pilot runs to establish process capability.

•	 Control by piloting the future-state process to ensure 
that any deviations from the target are corrected before 
they result in defects. Implement control systems such 
as statistical process control, and monitor the process 
to make sure the improvements are effective.
The 6σ process has many advantages, providing struc-

ture to the problem-solving effort so that the goals are clear 
and well-defined. The structure and sequential nature pro-
vide a common language so that stakeholders from every 

level can understand the problem and how it will be solved.
DMAIC also provides a data-driven structure to a diverse 

team of subject matter experts (SMEs) who each bring an 
expert, but possibly biased, understanding of the root 
cause in the process problem. In the absence of the DMAIC 
structure, SMEs may jump to premature conclusions based 
on their own process experiences. 

Wu et al.[15] point out that classical methods, such as 
control charts, aim to monitor the process and not imply 
the relationship between the EVs and the highly important 
outputs. Büchner et al.[16] elaborate on the shortcomings 
of retrospective statistical methods and state that they 
considerably limit the potential for continuous process 
improvement.

CRISP is the de facto industry standard process method-
ology for DM. The process was inspired by the 6σ DMAIC 
methodology and must be identified by practitioners 
to allow the adoption of DM as a key part of business 
processes.[17] It is an iterative and adaptive hierarchical 
process based on real-world experience of how people 
conduct DM projects, and provides an overview of the 
lifecycle of a DM project. The CRISP DM process framework 
defines six phases of a DM project, their respective tasks, 
the relationships between these tasks, and the deliverables 
of each phase. A brief outline of the phases is given next:

1.	 Business understanding. This initial phase focuses on 
understanding the project objectives and requirements 
from a business perspective. This phase is compara-
ble to the define phase of a 6σ project, where a plan 
is formed and the project goals are reviewed by the 
project sponsor.

2.	 Data understanding. The data understanding phase 
starts with initial data collection and proceeds with 
identification of data quality problems. Some early 
exploratory data analysis is also carried out in order to 
gain an initial impression of the possible relationships 
present in the data. This can be compared to the pre-
liminary stage of the “measure” phase of a 6σ project. 
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3.	 Data preparation. The data preparation phase covers all 
activities needed to construct the final data set from the 
initial raw data. This includes dimensionality reduction, 
dealing with missing values, data normalisation, and 
dealing with outliers. This phase is not usually required 
during a 6σ project.

4.	 Modelling. In this phase, modelling techniques are 
selected and applied, and their parameters are cali-
brated to optimal values. 

5.	 Evaluation. The practical applications of the model are 
evaluated. But before proceeding to the final deploy-
ment of the model, it is important to thoroughly evaluate 
and review the steps executed to create it to be certain 
the model properly achieves the business objectives. 
Any risk in applying the model must also be assessed.

6.	 Deployment. Creation of the model is not the end of 
the project. The knowledge gained will need to be 
translated into a format that the customer can use and 
understand. 
Figure 1 shows the structure of the team required to 

complete an analytics manufacturing project, adapted from 
the findings of Büchner et al.[16] Three skillsets are essential 
in building a team for a DM project in the manufacturing 
domain: a data expert, a DM expert, and a domain expert.

Ideally the data expert should belong to the IT depart-
ment and have experience with relational databases. This 
proved to be the case in this study. The data expert was 
an automation engineer with experience in querying data-
bases using structured query language (SQL) programming. 
This point is expanded upon in section 5.

The domain expert in this study belonged to the techni-
cal operations group and had significant experience with 
the manufacturing process and 6σ statistical techniques.

DM is usually carried out in large organisations; how-
ever, a domain expert who is also an expert in the data 
stored by the organisation is rare. Often the DM expert 
is a consultant with no knowledge of the manufactur-
ing process (which is a distinct disadvantage). The team 
for this project was fortunate in that the DM expert had 
experience in 6σ techniques and data retrieval using SQL, 
and was also familiar with the manufacturing process at 
a high level. 

2.2.  DM and Analytics Opportunities
Machine learning (ML), which is closely related to 

computational statistics, extends the use of DM through 
the use of algorithms that learn patterns from the data. 
ML approaches, such as NNs, are well-equipped to deal 
with the range of problems outlined in section 2. In many 
cases, NNs are used for modelling complex non-linear 
relations with a large number of EVs, as described by 
Hickey et al.[18] Chien et al.[19] illustrate how NNs can also 
adapt dynamically to changes occurring in the modelling 
system in real-time. This is essential for manufacturing 
applications. Even though the initial training results may 
not be accurate, the NN performance improves with time 
as more training data samples are provided. 

One advantage of using a NN is that it can be fitted to 
any kind of data set and does not require the relationships 
in the model to be explicitly stated. NNs are particularly 
useful when data may be noisy and relationships may be 
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Team skillsets.[16]
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non-linear, such as the data set in this study. Because of the 
complexity and non-linearity involved in vaccine manufac-
turing systems, such systems lend themselves well to the 
use of NNs, where they benefit from the NN online learn-
ing and adaptive abilities. NNs are criticised for being a 
black box but have demonstrated their usefulness in many 
practical applications within the manufacturing sector.[7]

NNs are a supervised learning approach designed to 
model the method by which human brains accomplish a 
certain task. Tetko et al. give some characteristics of NNs 
that have led to their widespread use.[20] A NN can learn by 
adjusting the topology (also called architecture or struc-
ture) and edge weights of a network connecting certain 
input signals to a desired output response. Such a training 
process is an iterative one which is run until no further 
adjustment is required. Once a NN design has been based 
on a training data set, it can then be tested and evaluated 
on a test data set. NNs can be used for classification or 
prediction tasks. 

In this paper, a NN is used to classify a production batch 
as high or low yield, depending on the values of the man-
ufacturing production process EVs.

2.2.1.  Cross-Validation of the Model
The cross-validation method involves repeated training 

of the neural network using a number of partially-overlap-
ping and arbitrarily large portions of data as the training 
sets, with the remainder of the data in each case being used 
as the independent test set. In this way, all data will eventu-
ally be used in the test set, and errors due to the inclusion 
of non-representative data in either set are avoided. This 
is effective but computationally expensive.

A validation set is used either to refine the topology of 
the network or to serve as a stopping criterion. NN topol-
ogy design parameters, such as the number of units in a 
hidden layer, or the number of hidden layers, determine 
the structure of the network.

In the first methodology, the network designer assesses 
the performance of different trained networks by evalu-
ating an objective function with the validation set. The 
network with the smallest error is selected. In the second 
approach, training and validating take place concurrently. 
The network stops learning once the sum of residuals, 
based on the validation set, starts to increase beyond a 
user-specified number of iterations. A testing set is later 
used to avoid overfitting where the network has learned 
the noise in the training data and is no longer useful to 
generalise unseen data.[21]

The accuracy measure for evaluating the performance 
of classifiers is defined as:

In this study which predicts high or low yield, a true 
positive is a high yield production batch that is correctly 

identified by the classifier as high yield. Accuracy is then 
defined as the number of correct (or true) high and correct 
low yield predictions divided by the total number of tests. 

Precision is another measure used in ML quality assess-
ment to measure the ability of the classifier to make positive 
predictions correctly. Precision of the classifier to identify 
high yield is defined for this study as the number of correct 
high yield predictions divided by the total number of high 
yield predictions (both correct and incorrect). A similar low 
yield precision measure is also defined. 

Recall is a measure used to quantify the sensitivity of 
an ML classification system. In the case of a high yield 
classification, it is defined as the number of correct (true) 
high yield predictions divided by the sum of the correct 
high and incorrect low yield predictions. A similar low yield 
recall measure is also defined.

The design of a NN is more of an art than a science. There 
is no unified approach for setting the design parameters 
of a NN. Zobel and Cook give a good overview of selecting 
the design parameters of NNs.[22] The general approach is 
one of trial and error to change the design parameters and 
note if it has an effect on the performance of the model. 
The NN design parameters include:
• 	 Hidden Layers. This parameter describes the number 

and size of all hidden layers. The user can define the 
structure (network topology) of the NN with this param-
eter. The hidden layer links the input layer to the output 
layer. Within each node in the hidden layer, a weighted 
sum calculation is carried out relating the input layer to 
the output using a predefined function.

•	 Training Cycles. This parameter specifies the number 
of training cycles used for the NN training. In a back-
propagation approach, the output values are compared 
with the correct answer to compute the value of some 
predefined error function. The error is then fed back 
through the network. Using this information, the 
back-propagation algorithm adjusts the weights of each 
connection in order to reduce the value of the error 
function by some small amount. This training process 
is repeated a number of times. 

•	 Learning Rate. This parameter determines how much 
the weights are changed at each step.

•	 Momentum. The momentum adds a fraction of the pre-
vious weight update to the current one. This prevents 
local maxima and smooths optimisation directions.

2.2.2.  Principal Component Analysis and Data Reduction
Bellman’s “curse of dimensionality” indicates that a large 

number of EVs and a small number of batches (or sam-
ples) can lead to a poor model. In this study, this problem 
occurs and many possible EVs are available for a num-
ber of production runs. A time series plot (TSP) shows a 
sequence of observations of the variables of interest such 
as temperature, pressure, and flow rate during the manu-
facturing process steps. TSP data can have extremely high 
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dimensionality because each time point can be viewed as a 
single dimension (giving a tuple of values for the EVs). High 
dimensionality can lead to an over-fitted ML model, and 
the raw time series may be too expensive computationally 
to process during the NN training stage, so the number of 
dimensions must be reduced.[23]  

One of the challenges faced early in the data prepara-
tion phase of this study was deciding how to deal with time 
series (TS) data from the pivotal filtration/concentration 
steps of the manufacturing process. It was essential to add 
this data to the model for consideration; however, distri-
butions of the values over time were erratic and did not 
fall into a recognised pattern (e.g., binomial, log, normal). 
To achieve data dimension reduction, the distribution of 
each EV (e.g., temperature) was represented by a number 
of descriptive statistical values such as the “moments” of 
the EV (for example, the mean is the first moment). These 
statistics were then passed as the inputs to the NN. The 
descriptive statistics method of data reduction was moti-
vated by Bickel and Lehmann[24] as a means to summarise 
a non-parametric model. They recommend the following 
group of statistics:

•	 Mean. The average of the values.

•	 Standard Error. The standard deviation of the sampling 
distribution of a distribution. Standard error of the mean 
(SEM) is calculated by dividing the standard deviation 
by the square root of the number of observations. 

•	 Median. The value in the middle of a set of numbers: 
half the numbers have values that are greater than the 
median, and half have values that are less.

•	 Mode. The most frequently occurring or repetitive value 
in an array or range of data.

•	 Standard Deviation. The standard deviation tells us how 
much variation is present in a distribution.

•	 Trimmed Mean (20%). Trimmed mean discards the top 
10 % and lowest 10 % of values. This was included to 
account for a large number of outliers. A significant 
number of outliers can be identified by comparing this 
value to the mean.

•	 Kurtosis. The relative peakedness (positive kurtosis) or 
flatness (negative kurtosis) of a distribution compared 
with the normal distribution. 

•	 Skewness. The degree of asymmetry of a distribution 
around its mean. Positive skewness indicates a distri-
bution with an asymmetric tail extending toward more 
positive values. Negative skewness indicates a distri-
bution with an asymmetric tail extending toward more 
negative values.

•	 Maximum. The maximum value recorded.

•	 Minimum. The minimum value recorded.

•	 Quartile 1 (Q1). The middle value in the first half of the 
rank-ordered data set.

•	 Quartile 3 (Q3). The middle value in the second half of 
the rank-ordered data set.

•	 Interquartile Range (IQR). A measure of variability based 
on dividing a data set into quartiles. Quartiles divide 
a rank-ordered data set into four equal parts. The val-
ues that divide each part are called the first, second, 
and third quartiles, and are denoted by Q1, Q2, and Q3 
respectively.
Principal component analysis (PCA)[25] is a multivariate 

dimension reduction technique applicable to large data 
sets. The set of possibly correlated EVs is reduced to a 
set of linearly uncorrelated principal components values. 
PCA identifies a vector similar to a basis that uncovers 
the underlying structure in the data. They are mathemat-
ical constructs that point in the direction where there is 
the most variance. PCA takes into account the combined 
contribution to the variation of a number of vectors as 
opposed to the univariate point of view represented by a 
correlation matrix.

3.  Methodology

The incumbent baseline multiple linear regression (MLR) 
used by company Z to identify yield improvement models 
the yield based on a correlation factor for univariate rela-
tionships within the data set. The NN model is compared 
with the incumbent MLR model using root mean squared 
as the error metric. 

3.1.  CRISP-DM Implementation
For the NN method, TSP data is first summarised using 

the measures suggested by Bickel and Lehmann.[24] PCA 
is then used for dimension reduction to identify a mini-
mal set of prioritised EVs. A NN model is then created to 
relate the identified EVs to manufacturing yield output. The 
CRISP-DM framework is used to support the implementa-
tion of the study, and a summary of the CRISP-DM phases 
of this study follows:
1.	 Business Understanding. As this methodology was a 

new approach for company Z, significant groundwork 
had to be completed to ensure management buy-in. 
This involved presentation of the methods as win-win 
since there was little or no capital required, and no new 
data was required since historical data was re-used. 
Manpower resources whose skill sets were complemen-
tary to the project’s requirements were identified, and 
in this case, a mix of process and statistical knowledge, 
with an interest in process modelling, were required. 
Due to company Z’s unfamiliarity with the CRISP-DM 
methods, it was difficult to assign a realistic goal for 
yield improvement. Company Z agreed to an initial study 
as proof of concept of the CRISP-DM process under the 
banner of a company-wide innovation initiative. 

2.	 Data Understanding. The data was extracted from 
multiple data sources and assembled into a format that 
could be read by the DM software. This was the most 
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time-consuming part of the process as most of the data 
preparation tasks were completed manually. Missing 
values were imputed using the k-means clustering 
algorithm. 

3.	 Data Preparation. The data from each database was 
combined into one data set, the TSP data was sum-
marised, and PCA was applied to reduce the data to 
the most significant EVs. The software platform used 
for these tasks was RapidMiner, which is an integrated 
software tool for ML and DM applications.
Each principal component (PC) explains a certain pro-
portion of the variation in the target variable (yield), and 
is a mathematical construct for the dimension reduction 
filtering effect. It is useful, from a practical point of view, 
to understand which EVs are significant.[26] Each PC is 
correlated with a number of EVs which the RapidMiner 
software ranks in order from highest to lowest. Grading 
for the study data showed there was a natural drop-off 
in correlation at 40 EVs. This process produces a prior-
itised data set which is then passed to the NN for the 
modelling phase. For example, in this study, a PC that 
explains 50% of the yield variation contributes 20 EVs 
to the pool of 40. This is discussed further in section 4. 

4.	 Modelling. The 40 EVs identified during the data prepa-
ration step are used to create a NN model. 

5.	 Evaluation. The output of the model shows an equa-
tion that gives each variable a correlation coefficient 
to illustrate how it relates to the other variables when 
yield is at the optimum. These findings are validated by 
the domain expert.

6.	 Deployment. Creation of the model is not the end of 
the project. The settings for EVs are implemented on 
the manufacturing floor, normally under protocol to 
validate the findings before they are committed to stan-
dard operating procedures.

Data Preparation Phase:  
Time Series Representation and Data Reduction

The data preparation phase of the CRISP-DM method
ology required careful consideration. As noted in 
section 2.2.2, large volumes of data had to be reduced to 
a manageable representation to allow a tractable model. 
Due to the high number of variables, 800–900 for each 
vaccine batch in this study, it was necessary to distill the 
number down to a more manageable size before it was 
passed to the NN model. In the data preparation phase 
of the CRISP-DM process, each of the statistics proposed 
by Bickel and Lehmann[24], as described in section 2.2.2, 
was calculated for each EV time series, creating a set of 
values that represent the TS, like the components of a 
fingerprint. 

Due to the high number of EVs, or p, in comparison 
to n (the number of batches), it was necessary to further 
reduce the number of possible EVs that are presented to 
the NN in order to obtain a tractable model. The dimen-

sion reduction was necessary as the software either could 
not handle the number of EVs, or in the cases where it 
could, the NN classification model was poor. This ratio of 
n:p was 24:180 for serotype X, and 21:344 for serotype Y. 
A number of NN training runs were attempted without 
reducing the dimension of the data, and the NN train-
ing process was stopped after 60 hours without having 
yielded a result.

Multi-group modelling is based on the assumption 
that a common eigenvector subspace exists for the indi-
vidual variance/covariance matrix. Through the pooled 
sample variance/covariance matrix of the batches relat-
ing to different yields, the principal component loading 
is calculated. The EVs that are most strongly correlated 
to yield in isolation are identified, and these 15–20 EVs 
(as there is a natural drop-off in correlation coefficient 
after this point) are used in the MLR model. Table 1 shows 
a comparison of the data reduction techniques for the 
MLR and NN approaches. 

3.2.  Modelling Using NNs
3.2.1.  NN Design Parameter Optimisation

Having prepared the data, the next phase of the 
CRISP-DM method focused on building an appropriate 
model. The RapidMiner software platform was used to 
develop the NN model and find good settings for the NN 
design parameters described in section 2.2.1. A summary 
of the impact of changes in the NN design parameters for 
serotype X are shown in Table 2. This information shows 
that the number of hidden layers, and the momentum, are 
significant factors. These NN design parameters were fed 
to the “optimise parameters” operator in RapidMiner to 
ensure high accuracy was reached in the final NN model.

TABLE 1.  Comparison of approaches.

Technique Incumbent 
MLR Model

Proposed 
NN Model

Dimension 
reduction Correlation matrix Principal  

component analysis

Modelling Multiple 
linear regression Neural network

TABLE 2.  NN model parameters for serotype X.

Model Parameter 
Adjusted Values Effect On 

Accuracy

Training cycles 100, 200, 300, 
500, 1000 None

Learning rates 0.1, 0.3, 0.5, 
0.8, 1.0 None

Hidden layers 1, 2, 3 Two hidden layers 
increased accuracy

Momentum 0.1, 0.3, 0.5, 1.0 1.0 decreased 
accuracy
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TABLE 5.  PCA for serotype X.

PCA 
Component

Standard 
Deviation Proportion Cumulative 

Proportion
EV 

Entitlement

PC 1 3.492 0.200 0.200 8

PC 2 3.315 0.180 0.380 7

PC 3 2.697 0.119 0.499 5

PC 4 2.273 0.085 0.584 3

PC 5 1.839 0.055 0.639 2

PC 6 1.810 0.054 0.693 2

PC 7 1.653 0.045 0.738 2

PC 8 1.623 0.043 0.781 2

PC 9 1.448 0.034 0.815 1

PC 10 1.300 0.028 0.843 1

PC 11 1.250 0.026 0.868 1

PC 12 1.168 0.022 0.891 1

PC 13 1.093 0.020 0.910 1

Improving Biopharmaceutical Manufacturing Yield Using Neural Network Classification

Table 3 shows the impact on accuracy for changes in 
the serotype Y NN design parameters.

The number of hidden layers and momentum are also 
significant in the serotype Y NN model. 

4.  Results and Analysis

4.1.  Model Performance Comparisons
Table 4 compares root mean squared errors (RMSEs) for 

each model. The NN model offers a significant improve-
ment over the MLR model for both serotype  X and 
serotype Y. Both NN models have a better RMSE, and the 
variance is also considerably smaller. This indicates that 
the distance from the residuals to the fitted model does 
not vary significantly from point-to-point.

In the serotype X MLR model, there is a possible addi-
tional error of ±5.751 on top of the already large RMSE. 
The p-values indicate that the MLR model is unsuitable. 
The residuals are large and not normally distributed, so 
the resulting outputs would be susceptible to misinterpre-
tation. The serotype Y MLR model shows similar findings, 
but on a smaller scale. 

The cumulative proportion column of Table 5 shows 
that the top 12 PCs are responsible for almost 90 % of the 
variability of the target yield variable for serotype X. The 
standard deviation column indicates how far the variables 
are dispersed from the principal component vector. As 
noted in section 3, PCA is used to identify a set of signif-
icant EVs. The PCs themselves are not passed to the NN; 
rather the set of prioritised EVs are identified by PCA. The 
number of prioritised EVs passed to the NN model is 40 
for each of the serotypes. This number was selected as 
there is a natural drop-off in the correlation of the EVs to 

the principal components from this point forward. From 
this pool of 40, the number taken from each PC vector 
is proportional to its cumulative contribution, as shown 
in Table 5. For example, if a PC contributes 40 % to the 
variability of the target yield variable, then the top 16 EVs 
constituting that PC are passed to the NN model. Table 5 
shows that PC1 explains 20% of the yield variation so it 
identifies eight of the 40 EVs, and this is shown in the 
EV entitlement column. 

TABLE 3.  NN model parameters for serotype Y.

Model Parameter 
Adjusted Values Effect On 

Accuracy

Training cycles 100, 200, 300, 
500, 1000 None

Learning rates 0.1, 0.3, 0.5, 
0.8, 1.0 None

Hidden layers 1, 2, 3 More than one hidden 
layer reduced accuracy

Momentum 0.1, 0.3, 
0.5, 1.0 1.0 decreased accuracy

TABLE 4.  Performance measure for model comparison.

Model Root Mean 
Squared Error p-Value

Serotype X NN 0.244 ± 0.279 NA

Serotype X MLR 11.892 ± 5.751 0.05

Serotype Y NN 0.464 ± 0.301 NA

Serotype Y MLR 3.724 ± 2.827 0.06
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 Figure 2.  Serotype X NN.

Improving Biopharmaceutical Manufacturing Yield Using Neural Network Classification

Table 6 shows a similar summary for serotype Y where the EV’s 
contribution to each principal component is based on how much 
it contributes to yield variation. The top 12 PCs explain 90% of the 
variability in serotype Y, as shown in Table 6. PC1 explains 30.2% of 
serotype Y yield variation and so identifies 12 of the 40 EVs.

4.2.  Serotype X NN Results
The RapidMiner software tool was used to create a NN for sero-

type X by using the prioritised EVs from the PCA as inputs. An image 
of the best NN is shown in Figure 2. The 40 EVs are seen as inputs on 
the left feeding into a small number of hidden nodes. The outputs on 
the right are the yield classification (high or low).

A sample output of the serotype X NN model is shown in Table 7. 
The model performs very well and predicts a serotype X yield with an 
accuracy of 87.5%. To calculate accuracy, the confusion table shows 
the true values in the columns, as compared with the predicted values 
in the rows. For example, in this case the model correctly predicted 
16 batches as having a high yield but predicted one batch as having 
a high yield when in fact it was low. The model has extremely high 
class precision in predicting high yield (94%).

The precision results show that the NN has a high capability of 
correctly identifying serotype X high yield batches (94.12%). Precision 
and recall measure often have an inverse relationship, but we see 
that the NN also has a high recall value (88.89%). The NN shows good 
performance in predicting low yield production batches. 

TABLE 7.  Confusion table for serotype X NN.

Yield True High True Low Class Precision

Predicted high 16 1 94.12%

Predicted low 12 5 71.43 %

Class recall 88.89 % 83.33% —

TABLE 6.  PCA for serotype Y.

PCA 
Component

Standard 
Deviation Proportion Cumulative 

Proportion
EV 

Entitlement

PC 1 5.928 0.302 0.302 12

PC 2 3.965 0.135 0.437 5

PC 3 3.669 0.116 0.553 5

PC 4 2.769 0.066 0.619 3

PC 5 2.555 0.056 0.675 2

PC 6 2.433 0.051 0.726 2

PC 7 2.387 0.049 0.775 2

PC 8 1.990 0.034 0.809 1

PC 9 1.850 0.029 0.838 1

PC 10 1.732 0.026 0.864 1

PC 11 1.674 0.024 0.888 1

PC 12 1.479 0.019 0.907 1
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 Figure 3.  Serotype Y NN topography.
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4.3.  Serotype Y NN Results
Figure 3 shows the topology of the NN created using the RapidMiner 

software for serotype Y. The 40 prioritised EVs identified by the PCA 
are fed in as inputs to produce the yield output classification.

The accuracy for the serotype Y model is given as 66.7% (Table 8). 
This is not as good as the serotype X model, and the reasons for this 
are explored in section 5. Again, the NN is better able to predict high 
yield production runs than correctly predicting low yield production 
runs for serotype Y. Unbalanced data sets are a common problem 
when performing DM on manufacturing data.[27] Failure rates tend to 
be so low that the data are unbalanced with only a low percentage of 
failed items. It is difficult for the ML technique to distinguish failures, 
as they occur so infrequently. 

4.4.  MLR Results
The incumbent MLR method is used to identify EVs with high 

correlation to yield in a univariate manner. These EVs are then inves-
tigated under the statistical process control framework. However, as 
noted in section 4.1, the MLR model results in a poor fit to the data, 
and direct comparison to the multivariate NN results is not possible. 
Whereas, the NN approach allows a combination of parameters to be 
identified and adjusted in unison to improve yield. 

4.5.  SME Interpretation of Results
Throughout the CRISP-DM process, it was necessary to work closely 

with the domain expert to validate the modelling process. At each 
stage of the process, the model outputs were reviewed by the domain 
expert to make sure that redundant variables that could not affect 
the yield of the batch were removed. In addition, batches that were 
not representative, due to process changes, were excluded from the 
data set.

Perhaps the most crucial considerations, while at the same time 
being the most nebulous, were “effects” that were removed from 
the data set at the domain expert’s recommendation. Correlation is 
not to be confused with causality, and the domain process expert 
reviewed the data to remove what were perceived as effects rather 
than causes of yield fluctuations. With the high number of variables, 
there was a chance that some of these effects were missed and used 
as input data for the model. This would mean that they would be 
correlated with yield and be prioritised as significant during data 
pre-processing.

5.  Recommendations and Discussion

5.1.  Challenges Identified During the Study
A number of challenges remain in applying an analytics model to a 

complex manufacturing system such as conjugating vaccines. It is true 
to say that there is a wealth of data accumulated from modern-day 

manufacturing, but it is also true to say that it 
is not stored with ease of access or extraction 
of value in mind. A large amount of time for 
this project was spent gathering data from 
disparate locations and converting them to 
a usable format for the RapidMiner program. 
There are significant challenges to aggregat-
ing and cleaning data from several different 
sources. The number of batches available 
and eligible for this study was smaller than 
the ideal (<25), and was a result of changes in 
the ongoing production process during the 
study period. Changes to the process were, 
for example, procuring a raw material from a 
different vendor. Because the components of 
the system are biological, these changes may 
not just affect the subsystem they are applied 
to, but could also have unforeseen effects on 
consequences further downstream. Changes 

TABLE 8.  Confusion table for serotype Y NN.

Yield True High True Low Class Precision

Predicted high 12 4 75.00 %

Predicted low 13 2 40.00 %

Class recall 80.00 % 33.33% —
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in the production configuration of the system and subsys-
tems constantly occur over time, in contrast to traditional 
DOE-controlled settings. The control charts used in the 
6σ approach identified some batches that were excluded 
from the study, as they were deemed to be too different 
due to incremental process improvement changes. 

The approach to the data in this paper aligns with 
the 6σ philosophy of continuous process improvement. 
As changes to the process occur in small incremental 
steps, sufficient data is available for the NN approach 
on a rolling basis in line with incremental process 
improvement changes, but care needs to be taken when 
identifying batch data that is representative of the pro-
cess as it currently stands.  

Although an expansive data set was gathered, it was 
not exhaustive. The problem of a lurking or hidden vari-
able is ever-present, such as one that is significant to yield 
but has not been analysed. It is important to recognise 
that there are limits to what we can capture and explain 
due to the sheer number of possible permutations. In  the 
words of George E. P. Box: “All models are wrong, but 
some are useful.” 

With so much data produced by a modern manufac-
turing process, analytics has a distinct advantage in that 
it is exploratory rather than ruling in or out a particular 
hypothesis. This is a very important quality when analys-
ing manufacturing data, as investigators may not always 
know what they are looking for. In the case of this study, 
the results were a significant improvement on the incum-
bent 6σ method, and the NN approach has been adopted 
on a trial basis by company Z for other serotypes. 

Currently, statistics are viewed as the domain of 
experts, but analytics has the potential to be a more 
widely accessible toolkit because of the availability of DM 
tools with graphical user interfaces (GUIs). Importantly, 
coaching on the statistical significance of results, and a 
grounding in the limitations of the models, are a prereq-
uisite for the appropriate application of analytics.

With the advent of electronic batch records and 
manufacturing execution systems, the raw materials 
required for the application of analytics are readily 
available. There is an abundance of real-time, shop-floor 
data. However, the skill sets using analytics to translate 
this into knowledge are scarce. It is an opportune time 
to start combining the two most valuable resources a 

manufacturing company has—its data and its people. 
The challenge is to invest in the systems and skill sets 
that will allow companies to optimise their use of existing 
process information. The first step is the commissioning 
of a dedicated analytics server which combines all the 
disparate pockets of data into a format that is easily and 
quickly analysed by a DM package. The true power of 
these techniques lies in their accessibility, with an ideal 
scenario being that the domain expert becomes profi-
cient in the use of these tools. 

With very little outlay, analytic techniques have the 
potential to significantly increase profit margins —
particularly in the fragile vaccine manufacturing 
domain.[3] The success of this project has led company Z 
to extend the methods to the remaining vaccine sero-
types that make up the product. But this is a secondary 
consideration compared with the effect these vaccine 
products have on the patients who receive them. The 
vaccine that is the subject of this study is predicted to 
save 1.5 million lives by 2020. 

While promising, the NN model results have limita-
tions. NNs are a heuristic technique, so the results are 
empirical evidence only. Much of this document describes 
measures taken in order to secure management buy-in, 
but measures must also be taken to manage management 
expectations. This NN classifies production settings that 
produce a high and low yield. It is important that man-
agement understands the model outputs and limitations 
of the NN and ML approaches. 

The analytics era is in its infancy, from a manufactur-
ing standpoint, but the practice of advanced analytics 
is grounded in years of mathematical research with 
successful applications in the equally volatile and com-
plex banking and finance industries. While these powerful 
tools are easy to use, a good understanding of their sta-
tistical foundations is crucial to the valid interpretation 
of results, and to ensure that assumptions underlying 
the statistical techniques are not violated. This is why 
the company-wide initiative, and the use of 6σ at all lev-
els of the company, should provide a fertile ground for 
making the case for DM and facilitating its acceptance. 
The 6σ mindset of measuring process performance and 
analysing data promotes data-based decision-making, 
and therefore makes DM a natural extension of this 
methodology. 
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